Switch to: Citations

Add references

You must login to add references.
  1. Independent Families in Complete Boolean Algebras.B. Balcar, F. Franek, Bohuslav Balcar, Jan Pelant, Petr Simon & Boban Velickovic - 2002 - Bulletin of Symbolic Logic 8 (4):554-554.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Ultrafilters on ω.James E. Baumgartner - 1995 - Journal of Symbolic Logic 60 (2):624-639.
    We study the I-ultrafilters on ω, where I is a collection of subsets of a set X, usually R or ω 1 . The I-ultrafilters usually contain the P-points, often as a small proper subset. We study relations between I-ultrafilters for various I, and closure of I-ultrafilters under ultrafilter sums. We consider, but do not settle, the question whether I-ultrafilters always exist.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Selective ultrafilters and homogeneity.Andreas Blass - 1988 - Annals of Pure and Applied Logic 38 (3):215-255.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Regular subalgebras of complete Boolean algebras.Aleksander Blaszczyk & Saharon Shelah - 2001 - Journal of Symbolic Logic 66 (2):792-800.
    It is proved that the following conditions are equivalent: (a) there exists a complete, atomless, σ-centered Boolean algebra, which does not contain any regular, atomless, countable subalgebra, (b) there exists a nowhere dense ultrafilter on ω. Therefore, the existence of such algebras is undecidable in ZFC. In "forcing language" condition (a) says that there exists a non-trivial σ-centered forcing not adding Cohen reals.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Ultrafilters on $omega$.James E. Baumgartner - 1995 - Journal of Symbolic Logic 60 (2):624-639.
    We study the $I$-ultrafilters on $\omega$, where $I$ is a collection of subsets of a set $X$, usually $\mathbb{R}$ or $\omega_1$. The $I$-ultrafilters usually contain the $P$-points, often as a small proper subset. We study relations between $I$-ultrafilters for various $I$, and closure of $I$-ultrafilters under ultrafilter sums. We consider, but do not settle, the question whether $I$-ultrafilters always exist.
    Download  
     
    Export citation  
     
    Bookmark   13 citations