Switch to: Citations

Add references

You must login to add references.
  1. Boolean Algebras.Roman Sikorski - 1966 - Journal of Symbolic Logic 31 (2):251-253.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Completeness of S4 for the Lebesgue Measure Algebra.Tamar Lando - 2012 - Journal of Philosophical Logic 41 (2):287-316.
    We prove completeness of the propositional modal logic S 4 for the measure algebra based on the Lebesgue-measurable subsets of the unit interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based semantics for the standard propositional modal language with Boolean connectives and necessity and possibility operators, and . Propositional modal formulae are assigned to Lebesgue-measurable subsets of the real interval [0, 1], modulo sets of measure zero. Equivalence classes of Lebesgue-measurable subsets form a measure algebra, , and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Modal logic.Yde Venema - 2000 - Philosophical Review 109 (2):286-289.
    Modern modal logic originated as a branch of philosophical logic in which the concepts of necessity and possibility were investigated by means of a pair of dual operators that are added to a propositional or first-order language. The field owes much of its flavor and success to the introduction in the 1950s of the “possible-worlds” semantics in which the modal operators are interpreted via some “accessibility relation” connecting possible worlds. In subsequent years, modal logic has received attention as an attractive (...)
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • (2 other versions)Set Theory.H. B. Enderton - 1975 - Journal of Symbolic Logic 40 (4):629-630.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Diodorean modality in Minkowski spacetime.Robert Goldblatt - 1980 - Studia Logica 39 (2-3):219 - 236.
    The Diodorean interpretation of modality reads the operator as it is now and always will be the case that. In this paper time is modelled by the four-dimensional Minkowskian geometry that forms the basis of Einstein's special theory of relativity, with event y coming after event x just in case a signal can be sent from x to y at a speed at most that of the speed of light (so that y is in the causal future of x).It is (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Strong completeness of s4 for any dense-in-itself metric space.Philip Kremer - 2013 - Review of Symbolic Logic 6 (3):545-570.
    In the topological semantics for modal logic, S4 is well-known to be complete for the rational line, for the real line, and for Cantor space: these are special cases of S4’s completeness for any dense-in-itself metric space. The construction used to prove completeness can be slightly amended to show that S4 is not only complete, but also strongly complete, for the rational line. But no similarly easy amendment is available for the real line or for Cantor space and the question (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Euclidean hierarchy in modal logic.Johan van Benthem, Guram Bezhanishvili & Mai Gehrke - 2003 - Studia Logica 75 (3):327-344.
    For a Euclidean space , let L n denote the modal logic of chequered subsets of . For every n 1, we characterize L n using the more familiar Kripke semantics, thus implying that each L n is a tabular logic over the well-known modal system Grz of Grzegorczyk. We show that the logics L n form a decreasing chain converging to the logic L of chequered subsets of . As a result, we obtain that L is also a logic (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • More on d-Logics of Subspaces of the Rational Numbers.Guram Bezhanishvili & Joel Lucero-Bryan - 2012 - Notre Dame Journal of Formal Logic 53 (3):319-345.
    We prove that each countable rooted K4 -frame is a d-morphic image of a subspace of the space $\mathbb{Q}$ of rational numbers. From this we derive that each modal logic over K4 axiomatizable by variable-free formulas is the d-logic of a subspace of $\mathbb{Q}$ . It follows that subspaces of $\mathbb{Q}$ give rise to continuum many d-logics over K4 , continuum many of which are neither finitely axiomatizable nor decidable. In addition, we exhibit several families of modal logics finitely axiomatizable (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Completeness of S4 with respect to the real line: revisited.Gurman Bezhanishvili & Mai Gehrke - 2005 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Connected modal logics.Guram Bezhanishvili & David Gabelaia - 2011 - Archive for Mathematical Logic 50 (3-4):287-317.
    We introduce the concept of a connected logic (over S4) and show that each connected logic with the finite model property is the logic of a subalgebra of the closure algebra of all subsets of the real line R, thus generalizing the McKinsey-Tarski theorem. As a consequence, we obtain that each intermediate logic with the finite model property is the logic of a subalgebra of the Heyting algebra of all open subsets of R.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Completeness of S4 with respect to the real line: revisited.Guram Bezhanishvili & Mai Gehrke - 2004 - Annals of Pure and Applied Logic 131 (1-3):287-301.
    We prove that S4 is complete with respect to Boolean combinations of countable unions of convex subsets of the real line, thus strengthening a 1944 result of McKinsey and Tarski 45 141). We also prove that the same result holds for the bimodal system S4+S5+C, which is a strengthening of a 1999 result of Shehtman 369).
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Multimo dal Logics of Products of Topologies.J. Van Benthem, G. Bezhanishvili, B. Ten Cate & D. Sarenac - 2006 - Studia Logica 84 (3):369 - 392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion ${\bf S4}\oplus {\bf S4}$ . We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies. We prove that both of these logics are complete for the product of rational numbers ${\Bbb Q}\times {\Bbb Q}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Multimo dal logics of products of topologies.Johan van Benthem, Guram Bezhanishvili, Balder ten Cate & Darko Sarenac - 2006 - Studia Logica 84 (3):369-392.
    We introduce the horizontal and vertical topologies on the product of topological spaces, and study their relationship with the standard product topology. We show that the modal logic of products of topological spaces with horizontal and vertical topologies is the fusion S4 ⊕ S4. We axiomatize the modal logic of products of spaces with horizontal, vertical, and standard product topologies.We prove that both of these logics are complete for the product of rational numbers ℚ × ℚ with the appropriate topologies.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • (1 other version)Semantical Analysis of Modal Logic I. Normal Propositional Calculi.Saul A. Kripke - 1963 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9 (5‐6):67-96.
    Download  
     
    Export citation  
     
    Bookmark   269 citations  
  • (2 other versions)The Mathematics of Metamathematics.Donald Monk - 1963 - Journal of Symbolic Logic 32 (2):274-275.
    Download  
     
    Export citation  
     
    Bookmark   96 citations