Switch to: Citations

Add references

You must login to add references.
  1. Uniform proofs of ACC representations.Sam Buss - 2017 - Archive for Mathematical Logic 56 (5-6):639-669.
    We give a uniform proof of the theorems of Yao and Beigel–Tarui representing ACC predicates as constant depth circuits with MODm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MOD}_{m}$$\end{document} gates and a symmetric gate. The proof is based on a relativized, generalized form of Toda’s theorem expressed in terms of closure properties of formulas under bounded universal, existential and modular counting quantifiers. This allows the main proofs to be expressed in terms of formula classes instead of Boolean circuits. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pool resolution is NP-hard to recognize.Samuel R. Buss - 2009 - Archive for Mathematical Logic 48 (8):793-798.
    A pool resolution proof is a dag-like resolution proof which admits a depth-first traversal tree in which no variable is used as a resolution variable twice on any branch. The problem of determining whether a given dag-like resolution proof is a valid pool resolution proof is shown to be NP-complete.
    Download  
     
    Export citation  
     
    Bookmark   2 citations