Switch to: Citations

Add references

You must login to add references.
  1. The Potential of Using Quantum Theory to Build Models of Cognition.Zheng Wang, Jerome R. Busemeyer, Harald Atmanspacher & Emmanuel M. Pothos - 2013 - Topics in Cognitive Science 5 (4):672-688.
    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Causality and Chance in Modern Physics.David Bohm - 1960 - British Journal for the Philosophy of Science 10 (40):321-338.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • The empirical case for two systems of reasoning.Steven A. Sloman - 1996 - Psychological Bulletin 119 (1):3-22.
    Distinctions have been proposed between systems of reasoning for centuries. This article distills properties shared by many of these distinctions and characterizes the resulting systems in light of recent findings and theoretical developments. One system is associative because its computations reflect similarity structure and relations of temporal contiguity. The other is "rule based" because it operates on symbolic structures that have logical content and variables and because its computations have the properties that are normally assigned to rules. The systems serve (...)
    Download  
     
    Export citation  
     
    Bookmark   466 citations  
  • A Quantum Question Order Model Supported by Empirical Tests of an A Priori and Precise Prediction.Zheng Wang & Jerome R. Busemeyer - 2013 - Topics in Cognitive Science 5 (4):689-710.
    Question order effects are commonly observed in self-report measures of judgment and attitude. This article develops a quantum question order model (the QQ model) to account for four types of question order effects observed in literature. First, the postulates of the QQ model are presented. Second, an a priori, parameter-free, and precise prediction, called the QQ equality, is derived from these mathematical principles, and six empirical data sets are used to test the prediction. Third, a new index is derived from (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Causality and Chance in Modern Physics.David Bohm - 1957 - London: Routledge.
    In this classic, David Bohm was the first to offer us his causal interpretation of the quantum theory. _Causality and Chance in Modern Physics_ continues to make possible further insight into the meaning of the quantum theory and to suggest ways of extending the theory into new directions.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Open Parallel Cooperative and Competitive Decision Processes: A Potential Provenance for Quantum Probability Decision Models.Ian G. Fuss & Daniel J. Navarro - 2013 - Topics in Cognitive Science 5 (4):818-843.
    In recent years quantum probability models have been used to explain many aspects of human decision making, and as such quantum models have been considered a viable alternative to Bayesian models based on classical probability. One criticism that is often leveled at both kinds of models is that they lack a clear interpretation in terms of psychological mechanisms. In this paper we discuss the mechanistic underpinnings of a quantum walk model of human decision making and response time. The quantum walk (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Complementarity in Classical Dynamical Systems.Harald Atmanspacher - 2006 - Foundations of Physics 36 (2):291-306.
    The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an ad hoc partition of an underlying phase space description should (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations