Switch to: Citations

Add references

You must login to add references.
  1. Distributive Lattices.Raymond Balbes & Philip Dwinger - 1977 - Journal of Symbolic Logic 42 (4):587-588.
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Free Algebras in Varieties of Glivenko MTL-Algebras Satisfying the Equation 2(x²) = (2x)².Roberto Cignoli & Antoni Torrens Torrell - 2006 - Studia Logica 83 (1-3):157 - 181.
    The aim of this paper is to give a description of the free algebras in some varieties of Glivenko MTL-algebras having the Boolean retraction property. This description is given (generalizing the results of [9]) in terms of weak Boolean products over Cantor spaces. We prove that in some cases the stalks can be obtained in a constructive way from free kernel DL-algebras, which are the maximal radical of directly indecomposable Glivenko MTL-algebras satisfying the equation in the title. We include examples (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Bounded BCK-algebras and their generated variety.J. D. Gispert & Antoni Torrens Torrell - 2007 - Mathematical Logic Quarterly 53 (2):206-213.
    In this paper we prove that the equational class generated by bounded BCK-algebras is the variety generated by the class of finite simple bounded BCK-algebras. To obtain these results we prove that every simple algebra in the equational class generated by bounded BCK-algebras is also a relatively simple bounded BCK-algebra. Moreover, we show that every simple bounded BCK-algebra can be embedded into a simple integral commutative bounded residuated lattice. We extend our main results to some richer subreducts of the class (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Glivenko like theorems in natural expansions of BCK‐logic.Roberto Cignoli & Antoni Torrens Torrell - 2004 - Mathematical Logic Quarterly 50 (2):111-125.
    The classical Glivenko theorem asserts that a propositional formula admits a classical proof if and only if its double negation admits an intuitionistic proof. By a natural expansion of the BCK-logic with negation we understand an algebraizable logic whose language is an expansion of the language of BCK-logic with negation by a family of connectives implicitly defined by equations and compatible with BCK-congruences. Many of the logics in the current literature are natural expansions of BCK-logic with negation. The validity of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)Glivenko like theorems in natural expansions of BCK‐logic.Roberto Cignoli & Antoni Torrens Torrell - 2004 - Mathematical Logic Quarterly 50 (2):111-125.
    The classical Glivenko theorem asserts that a propositional formula admits a classical proof if and only if its double negation admits an intuitionistic proof. By a natural expansion of the BCK‐logic with negation we understand an algebraizable logic whose language is an expansion of the language of BCK‐logic with negation by a family of connectives implicitly defined by equations and compatible with BCK‐congruences. Many of the logics in the current literature are natural expansions of BCK‐logic with negation. The validity of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Bounded BCK‐algebras and their generated variety.Joan Gispert & Antoni Torrens - 2007 - Mathematical Logic Quarterly 53 (2):206-213.
    In this paper we prove that the equational class generated by bounded BCK-algebras is the variety generated by the class of finite simple bounded BCK-algebras. To obtain these results we prove that every simple algebra in the equational class generated by bounded BCK-algebras is also a relatively simple bounded BCK-algebra. Moreover, we show that every simple bounded BCK-algebra can be embedded into a simple integral commutative bounded residuated lattice. We extend our main results to some richer subreducts of the class (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations