Switch to: Citations

Add references

You must login to add references.
  1. General Theory of Natural Equivalences.Saunders MacLane & Samuel Eilenberg - 1945 - Transactions of the American Mathematical Society:231-294.
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Mathematics, ideas, and the physical real.Albert Lautman - 2011 - New York: Continuum. Edited by Simon B. Duffy.
    The first English collection of the work of Albert Lautman, a major figure in philosophy of mathematics and a key influence on Badiou and Deleuze.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Identity in physics: a historical, philosophical, and formal analysis.Steven French & Décio Krause - 2006 - New York: Oxford University Press. Edited by Decio Krause.
    Steven French and Decio Krause examine the metaphysical foundations of quantum physics. They draw together historical, logical, and philosophical perspectives on the fundamental nature of quantum particles and offer new insights on a range of important issues. Focusing on the concepts of identity and individuality, the authors explore two alternative metaphysical views; according to one, quantum particles are no different from books, tables, and people in this respect; according to the other, they most certainly are. Each view comes with certain (...)
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • (1 other version)Primitive thisness and primitive identity.Robert Merrihew Adams - 1979 - Journal of Philosophy 76 (1):5-26.
    Download  
     
    Export citation  
     
    Bookmark   251 citations  
  • (1 other version)Primitive Thisness and Primitive Identity.Robert Merrihew Adams - 2004 - In Tim Crane & Katalin Farkas (eds.), Metaphysics: a guide and anthology. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   164 citations  
  • Model Theory: An Introduction.David Marker - 2003 - Bulletin of Symbolic Logic 9 (3):408-409.
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • (1 other version)Philosophy of Mathematics and Natural Science.Hermann Weyl - 1949 - Princeton, N.J.: Princeton University Press. Edited by Olaf Helmer-Hirschberg & Frank Wilczek.
    This is a book that no one but Weyl could have written--and, indeed, no one has written anything quite like it since.
    Download  
     
    Export citation  
     
    Bookmark   245 citations  
  • Physics and Leibniz's principles.Simon Saunders - 2002 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 289--307.
    It is shown that the Hilbert-Bernays-Quine principle of identity of indiscernibles applies uniformly to all the contentious cases of symmetries in physics, including permutation symmetry in classical and quantum mechanics. It follows that there is no special problem with the notion of objecthood in physics. Leibniz's principle of sufficient reason is considered as well; this too applies uniformly. But given the new principle of identity, it no longer implies that space, or atoms, are unreal.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Algebraic quantum field theory.Hans Halvorson & Michael Mueger - 2006 - In J. Butterfield & J. Earman (eds.), Handbook of the philosophy of physics. Kluwer Academic Publishers.
    Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the basics of the theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Towards a Galoisian lnterpretation of Heisenberg lndeterminacy Principle.Julien Page & Gabriel Catren - 2014 - Foundations of Physics 44 (12):1289-1301.
    We revisit Heisenberg indeterminacy principle in the light of the Galois–Grothendieck theory for the case of finite abelian Galois extensions. In this restricted framework, the Galois–Grothendieck duality between finite K-algebras split by a Galois extension \ and finite \\) -sets can be reformulated as a Pontryagin duality between two abelian groups. We define a Galoisian quantum model in which the Heisenberg indeterminacy principle can be understood as a manifestation of a Galoisian duality: the larger the group of automorphisms \ of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Remarks on abstract Galois theory.Newton C. A. da Costa & Otávio Bueno - 2011 - Manuscrito 34 (1):151-183.
    This paper is a historical companion to a previous one, in which it was studied the so-called abstract Galois theory as formulated by the Portuguese mathematician José Sebastião e Silva ). Our purpose is to present some applications of abstract Galois theory to higher-order model theory, to discuss Silva's notion of expressibility and to outline a classical Galois theory that can be obtained inside the two versions of the abstract theory, those of Mark Krasner and of Silva. Some comments are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Passion des formes, à René Thom.[author unknown] - 1996 - Acta Biotheoretica 44 (1):90-90.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • La philosophie de l'algèbre.Jules Vuillemin - 1962 - Presses Universitaires de France - PUF.
    Introduction Première partie – Réflexions sur le développement de la théorie des équations algébriques Section première. Les règles de la méthode Chapitre premier. Le théorème de Lagrange Chapitre II. Le théorème de Gauss Chapitre III. La « méthode générale » d'Abel : preuves « pures » et démonstrations d'impossibilité Chapitre IV. La théorie de Galois Section deuxième – Mathématique universelle Chapitre V. La théorie de Klein Chapitre VI. La théorie de Lie Conclusion. La mathématique universelle Notes Note I. Sur la (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations