Switch to: Citations

Add references

You must login to add references.
  1. Σ2 -collection and the infinite injury priority method.Michael E. Mytilinaios & Theodore A. Slaman - 1988 - Journal of Symbolic Logic 53 (1):212-221.
    We show that the existence of a recursively enumerable set whose Turing degree is neither low nor complete cannot be proven from the basic axioms of first order arithmetic (P -) together with Σ 2 -collection (BΣ 2 ). In contrast, a high (hence, not low) incomplete recursively enumerable set can be assembled by a standard application of the infinite injury priority method. Similarly, for each n, the existence of an incomplete recursively enumerable set that is neither low n nor (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Three theorems on recursive enumeration. I. decomposition. II. maximal set. III. enumeration without duplication.Richard M. Friedberg - 1958 - Journal of Symbolic Logic 23 (3):309-316.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (2 other versions)Some Reasons for Generalizing Recursion Theory.G. Kreisel, R. O. Gandy & C. E. M. Yates - 1975 - Journal of Symbolic Logic 40 (2):230-232.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Hyperhypersimple alpha-r.e. sets.C. T. Chong - 1976 - Annals of Mathematical Logic 9 (1/2):1.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Hyperhypersimple α-r.e. sets.C. T. Chong & M. Lerman - 1976 - Annals of Mathematical Logic 9 (1-2):1-48.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Finite injury and Σ1-induction.Michael Mytilinaios - 1989 - Journal of Symbolic Logic 54 (1):38 - 49.
    Working in the language of first-order arithmetic we consider models of the base theory P - . Suppose M is a model of P - and let M satisfy induction for σ 1 -formulas. First it is shown that the Friedberg-Muchnik finite injury argument can be performed inside M, and then, using a blocking method for the requirements, we prove that the Sacks splitting construction can be done in M. So, the "amount" of induction needed to perform the known finite (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations