Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
    Download  
     
    Export citation  
     
    Bookmark   812 citations  
  • Plural reference and set theory.Peter Simons - 1982 - In Barry Smith (ed.), Parts and Moments. Studies in Logic and Formal Ontology. Philosophia Verlag. pp. 199--260.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Non-Well-Founded Sets.Peter Aczel - 1988 - Palo Alto, CA, USA: Csli Lecture Notes.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Grammar and existence: A preface to ontology.Wilfrid Sellars - 1960 - Mind 69 (276):499-533.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)To be is to be a value of a variable (or to be some values of some variables).George Boolos - 1984 - Journal of Philosophy 81 (8):430-449.
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • Logical Studies in Early Analytic Philosophy.Nino B. Cocchiarella - 1987 - Columbus, OH, USA: Ohio State University Press.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Introduction to Mathematical Philosophy.Bertrand Russell - 1919 - Revue Philosophique de la France Et de l'Etranger 89:465-466.
    Download  
     
    Export citation  
     
    Bookmark   490 citations  
  • Sortals, natural kinds and re-identification.Nino Cocchiarella - 1977 - Logique Et Analyse 20 (80):439.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A conceptualist interpretation of Lesniewski's ontology.Nino B. Cocchiarella - 2001 - History and Philosophy of Logic 22 (1):29-43.
    A first-order formulation of Leśniewski's ontology is formulated and shown to be interpretable within a free first-order logic of identity extended to include nominal quantification over proper and common-name concepts. The latter theory is then shown to be interpretable in monadic second-order predicate logic, which shows that the first-order part of Leśniewski's ontology is decidable.
    Download  
     
    Export citation  
     
    Bookmark   8 citations