Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Working below a low2 recursively enumerably degree.Richard A. Shore & Theodore A. Slaman - 1990 - Archive for Mathematical Logic 29 (3):201-211.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A recursively enumerable degree which will not split over all lesser ones.Alistair H. Lachlan - 1976 - Annals of Mathematical Logic 9 (4):307.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Classical Recursion Theory.Peter G. Hinman - 2001 - Bulletin of Symbolic Logic 7 (1):71-73.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • (1 other version)Properly Σ2 Enumeration Degrees.S. B. Cooper & C. S. Copestake - 1988 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 34 (6):491-522.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the distribution of Lachlan nonsplitting bases.S. Barry Cooper, Angsheng Li & Xiaoding Yi - 2002 - Archive for Mathematical Logic 41 (5):455-482.
    We say that a computably enumerable (c.e.) degree b is a Lachlan nonsplitting base (LNB), if there is a computably enumerable degree a such that a > b, and for any c.e. degrees w,v ≤ a, if a ≤ w or; v or; b then either a ≤ w or; b or a ≤ v or; b. In this paper we investigate the relationship between bounding and nonbounding of Lachlan nonsplitting bases and the high /low hierarchy. We prove that there (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • There is No Low Maximal D.C.E. Degree.Marat Arslanov, S. Barry Cooper & Angsheng Li - 2000 - Mathematical Logic Quarterly 46 (3):409-416.
    We show that for any computably enumerable set A and any equation image set L, if L is low and equation image, then there is a c.e. splitting equation image such that equation image. In Particular, if L is low and n-c.e., then equation image is n-c.e. and hence there is no low maximal n-c.e. degree.
    Download  
     
    Export citation  
     
    Bookmark   3 citations