Switch to: Citations

Add references

You must login to add references.
  1. Aronszajn trees and the independence of the transfer property.William Mitchell - 1972 - Annals of Mathematical Logic 5 (1):21.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Forcing with Sequences of Models of Two Types.Itay Neeman - 2014 - Notre Dame Journal of Formal Logic 55 (2):265-298.
    We present an approach to forcing with finite sequences of models that uses models of two types. This approach builds on earlier work of Friedman and Mitchell on forcing to add clubs in cardinals larger than $\aleph_{1}$, with finite conditions. We use the two-type approach to give a new proof of the consistency of the proper forcing axiom. The new proof uses a finite support forcing, as opposed to the countable support iteration in the standard proof. The distinction is important (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The combinatorial essence of supercompactness.Christoph Weiß - 2012 - Annals of Pure and Applied Logic 163 (11):1710-1717.
    We introduce combinatorial principles that characterize strong compactness and supercompactness for inaccessible cardinals but also make sense for successor cardinals. Their consistency is established from what is supposedly optimal. Utilizing the failure of a weak version of a square, we show that the best currently known lower bounds for the consistency strength of these principles can be applied.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • On the Hamkins approximation property.William J. Mitchell - 2006 - Annals of Pure and Applied Logic 144 (1-3):126-129.
    We give a short proof of a lemma which generalizes both the main lemma from the original construction in the author’s thesis of a model with no ω2-Aronszajn trees, and also the “Key Lemma” in Hamkins’ gap forcing theorems. The new lemma directly yields Hamkins’ newer lemma stating that certain forcing notions have the approximation property.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Coherent adequate forcing and preserving CH.John Krueger & Miguel Angel Mota - 2015 - Journal of Mathematical Logic 15 (2):1550005.
    We develop a general framework for forcing with coherent adequate sets on [Formula: see text] as side conditions, where [Formula: see text] is a cardinal of uncountable cofinality. We describe a class of forcing posets which we call coherent adequate type forcings. The main theorem of the paper is that any coherent adequate type forcing preserves CH. We show that there exists a forcing poset for adding a club subset of [Formula: see text] with finite conditions while preserving CH, solving (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Adding a club with finite conditions, Part II.John Krueger - 2015 - Archive for Mathematical Logic 54 (1-2):161-172.
    We define a forcing poset which adds a club subset of a given fat stationary set S⊆ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subseteq \omega_2}$$\end{document} with finite conditions, using S-adequate sets of models as side conditions. This construction, together with the general amalgamation results concerning S-adequate sets on which it is based, is substantially shorter and simpler than our original version in Krueger :119–136, 2014).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • BPFA and Inner Models.Sy-David Friedman - 2011 - Annals of the Japan Association for Philosophy of Science 19:29-36.
    Download  
     
    Export citation  
     
    Bookmark   2 citations