Switch to: Citations

Add references

You must login to add references.
  1. Inductively generated formal topologies.Thierry Coquand, Giovanni Sambin, Jan Smith & Silvio Valentini - 2003 - Annals of Pure and Applied Logic 124 (1-3):71-106.
    Formal topology aims at developing general topology in intuitionistic and predicative mathematics. Many classical results of general topology have been already brought into the realm of constructive mathematics by using formal topology and also new light on basic topological notions was gained with this approach which allows distinction which are not expressible in classical topology. Here we give a systematic exposition of one of the main tools in formal topology: inductive generation. In fact, many formal topologies can be presented in (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Aspects of general topology in constructive set theory.Peter Aczel - 2006 - Annals of Pure and Applied Logic 137 (1-3):3-29.
    Working in constructive set theory we formulate notions of constructive topological space and set-generated locale so as to get a good constructive general version of the classical Galois adjunction between topological spaces and locales. Our notion of constructive topological space allows for the space to have a class of points that need not be a set. Also our notion of locale allows the locale to have a class of elements that need not be a set. Class sized mathematical structures need (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Heyting-valued interpretations for Constructive Set Theory.Nicola Gambino - 2006 - Annals of Pure and Applied Logic 137 (1-3):164-188.
    We define and investigate Heyting-valued interpretations for Constructive Zermelo–Frankel set theory . These interpretations provide models for CZF that are analogous to Boolean-valued models for ZF and to Heyting-valued models for IZF. Heyting-valued interpretations are defined here using set-generated frames and formal topologies. As applications of Heyting-valued interpretations, we present a relative consistency result and an independence proof.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Pretopologies and completeness proofs.Giovanni Sambin - 1995 - Journal of Symbolic Logic 60 (3):861-878.
    Pretopologies were introduced in [S], and there shown to give a complete semantics for a propositional sequent calculus BL, here called basic linear logic, as well as for its extensions by structural rules,ex falso quodlibetor double negation. Immediately after Logic Colloquium '88, a conversation with Per Martin-Löf helped me to see how the pretopology semantics should be extended to predicate logic; the result now is a simple and fully constructive completeness proof for first order BL and virtually all its extensions, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • CZF and second order arithmetic.Robert S. Lubarsky - 2006 - Annals of Pure and Applied Logic 141 (1):29-34.
    Constructive ZF + full separation is shown to be equiconsistent with Second Order Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Formal topologies on the set of first-order formulae.Thierry Coquand, Sara Sadocco, Giovanni Sambin & Jan Smith - 2000 - Journal of Symbolic Logic 65 (3):1183-1192.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Forcing in intuitionistic systems without power-set.R. J. Grayson - 1983 - Journal of Symbolic Logic 48 (3):670-682.
    It is shown how to define forcing semantics within metatheories not containing the power-set construction, in particular, how to construct exponents assuming only (a slightly strengthened form of) exponents in the metatheory. Some straightforward applications (consistency and independence results, and derived rules) are obtained for such systems.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Exact approximations to Stone–Čech compactification.Giovanni Curi - 2007 - Annals of Pure and Applied Logic 146 (2):103-123.
    Given a locale L and any set-indexed family of continuous mappings , fi:L→Li with compact and completely regular co-domain, a compactification η:L→Lγ of L is constructed enjoying the following extension property: for every a unique continuous mapping exists such that . Considered in ordinary set theory, this compactification also enjoys certain convenient weight limitations.Stone–Čech compactification is obtained as a particular case of this construction in those settings in which the class of [0,1]-valued continuous mappings is a set for all L. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the existence of Stone-Čech compactification.Giovanni Curi - 2010 - Journal of Symbolic Logic 75 (4):1137-1146.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the T 1 axiom and other separation properties in constructive point-free and point-set topology.Peter Aczel & Giovanni Curi - 2010 - Annals of Pure and Applied Logic 161 (4):560-569.
    In this note a T1 formal space is a formal space whose points are closed as subspaces. Any regular formal space is T1. We introduce the more general notion of a formal space, and prove that the class of points of a weakly set-presentable formal space is a set in the constructive set theory CZF. The same also holds in constructive type theory. We then formulate separation properties for constructive topological spaces , strengthening separation properties discussed elsewhere. Finally we relate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An intuitionistic proof of Tychonoff's theorem.Thierry Coquand - 1992 - Journal of Symbolic Logic 57 (1):28-32.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Aspects of general topology in constructive set theory.Peter Azcel - 2006 - Annals of Pure and Applied Logic 137 (1-3):3-29.
    Working in constructive set theory we formulate notions of constructive topological space and set-generated locale so as to get a good constructive general version of the classical Galois adjunction between topological spaces and locales. Our notion of constructive topological space allows for the space to have a class of points that need not be a set. Also our notion of locale allows the locale to have a class of elements that need not be a set. Class sized mathematical structures need (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations