Switch to: Citations

Add references

You must login to add references.
  1. Some applications of iterated ultrapowers in set theory.Kenneth Kunen - 1970 - Annals of Mathematical Logic 1 (2):179.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • (1 other version)Elementary embeddings and infinitary combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
    One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Some strong axioms of infinity incompatible with the axiom of constructibility.Frederick Rowbottom - 1971 - Annals of Mathematical Logic 3 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Some weak versions of large cardinal axioms.Keith J. Devlin - 1973 - Annals of Mathematical Logic 5 (4):291.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Some applications of model theory in set theory.Jack H. Silver - 1971 - Annals of Mathematical Logic 3 (1):45.
    Download  
     
    Export citation  
     
    Bookmark   55 citations