Switch to: Citations

Add references

You must login to add references.
  1. Indistinguishability.Simon Saunders - unknown
    This is a systematic review of the concept of indistinguishability, in both classical and quantum mechanics, with particular attention to Gibbs paradox. Section 1 is on the Gibbs paradox; section 2 is a defense of classical indistinguishability, notwithstanding the widely-held view, that classical particles can always be distinguished by their trajectories. The last section is about the notion of object more generally, and on whether indistinguishables should be thought of as objects at all.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Identical particles and weak discernibility.Dennis Dieks & Marijn Versteegh - unknown
    Saunders has recently claimed that ``identical quantum particles'' with an anti-symmetric state (fermions) are weakly discernible objects, just like irreflexively related ordinary objects in situations with perfect symmetry (Black's spheres, for example). Weakly discernible objects have all their qualitative properties in common but nevertheless differ from each other by virtue of (a generalized version of) Leibniz's principle, since they stand in relations an entity cannot have to itself. This notion of weak discernibility has been criticized as question begging, but we (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Identical Quantum Particles and Weak Discernibility.Dennis Dieks & Marijn A. M. Versteegh - 2008 - Foundations of Physics 38 (10):923-934.
    Saunders has recently claimed that “identical quantum particles” with an anti-symmetric state (fermions) are weakly discernible objects, just like irreflexively related ordinary objects in situations with perfect symmetry (Black’s spheres, for example). Weakly discernible objects have all their qualitative properties in common but nevertheless differ from each other by virtue of (a generalized version of) Leibniz’s principle, since they stand in relations an entity cannot have to itself. This notion of weak discernibility has been criticized as question begging, but we (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The Gibbs Paradox and the Distinguishability of Identical Particles.Marijn A. M. Versteegh & Dennis Dieks - unknown
    Classical particles of the same kind are distinguishable: they can be labeled by their positions and follow different trajectories. This distinguishability affects the number of ways W a macrostate can be realized on the micro-level, and via S=k ln W this leads to a non-extensive expression for the entropy. This result is generally considered wrong because of its inconsistency with thermodynamics. It is sometimes concluded from this inconsistency, notoriously illustrated by the Gibbs paradox, that identical particles must be treated as (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Choosing a Definition of Entropy that Works.Robert H. Swendsen - 2012 - Foundations of Physics 42 (4):582-593.
    Disagreements over the meaning of the thermodynamic entropy and how it should be defined in statistical mechanics have endured for well over a century. In an earlier paper, I showed that there were at least nine essential properties of entropy that are still under dispute among experts. In this paper, I examine the consequences of differing definitions of the thermodynamic entropy of macroscopic systems.Two proposed definitions of entropy in classical statistical mechanics are (1) defining entropy on the basis of probability (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Gibbs paradox revisited.Dennis Dieks - 2011 - In Dennis Dieks, Wenceslao Gonzalo, Thomas Uebel, Stephan Hartmann & Marcel Weber (eds.), Explanation, Prediction, and Confirmation. Springer. pp. 367--377.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • How Classical Particles Emerge From the Quantum World.Dennis Dieks & Andrea Lubberdink - 2011 - Foundations of Physics 41 (6):1051-1064.
    The symmetrization postulates of quantum mechanics (symmetry for bosons, antisymmetry for fermions) are usually taken to entail that quantum particles of the same kind (e.g., electrons) are all in exactly the same state and therefore indistinguishable in the strongest possible sense. These symmetrization postulates possess a general validity that survives the classical limit, and the conclusion seems therefore unavoidable that even classical particles of the same kind must all be in the same state—in clear conflict with what we know about (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations