Switch to: Citations

Add references

You must login to add references.
  1. A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Real closed rings II. model theory.Gregory Cherlin & Max A. Dickmann - 1983 - Annals of Pure and Applied Logic 25 (3):213-231.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • O-minimal residue fields of o-minimal fields.Jana Maříková - 2011 - Annals of Pure and Applied Logic 162 (6):457-464.
    Let R be an o-minimal field with a proper convex subring V. We axiomatize the class of all structures such that , the corresponding residue field with structure induced from R via the residue map, is o-minimal. More precisely, in Maříková [8] it was shown that certain first-order conditions on are sufficient for the o-minimality of . Here we prove that these conditions are also necessary.
    Download  
     
    Export citation  
     
    Bookmark   2 citations