Switch to: Citations

References in:

Frege's Theorem [Book Review]

Philosophical Quarterly 64 (254):166-169 (2014)

Add references

You must login to add references.
  1. Conservativeness, Stability, and Abstraction.Roy T. Cook - 2012 - British Journal for the Philosophy of Science 63 (3):673-696.
    One of the main problems plaguing neo-logicism is the Bad Company challenge: the need for a well-motivated account of which abstraction principles provide legitimate definitions of mathematical concepts. In this article a solution to the Bad Company challenge is provided, based on the idea that definitions ought to be conservative. Although the standard formulation of conservativeness is not sufficient for acceptability, since there are conservative but pairwise incompatible abstraction principles, a stronger conservativeness condition is sufficient: that the class of acceptable (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The good, the bad and the ugly.Philip Ebert & Stewart Shapiro - 2009 - Synthese 170 (3):415-441.
    This paper discusses the neo-logicist approach to the foundations of mathematics by highlighting an issue that arises from looking at the Bad Company objection from an epistemological perspective. For the most part, our issue is independent of the details of any resolution of the Bad Company objection and, as we will show, it concerns other foundational approaches in the philosophy of mathematics. In the first two sections, we give a brief overview of the "Scottish" neo-logicist school, present a generic form (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Frege’s Conception of Logic.Patricia Blanchette - 2012 - Oxford, England: Oup Usa.
    In Frege's Conception of Logic Patricia A. Blanchette explores the relationship between Gottlob Frege's understanding of conceptual analysis and his understanding of logic.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Frege on knowing the foundation.Tyler Burge - 1998 - Mind 107 (426):305-347.
    The paper scrutinizes Frege's Euclideanism - his view of arithmetic and geometry as resting on a small number of self-evident axioms from which non-self-evident theorems can be proved. Frege's notions of self-evidence and axiom are discussed in some detail. Elements in Frege's position that are in apparent tension with his Euclideanism are considered - his introduction of axioms in The Basic Laws of Arithmetic through argument, his fallibilism about mathematical understanding, and his view that understanding is closely associated with inferential (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations