Switch to: Citations

Add references

You must login to add references.
  1. Leibnizian models of set theory.Ali Enayat - 2004 - Journal of Symbolic Logic 69 (3):775-789.
    A model is said to be Leibnizian if it has no pair of indiscernibles. Mycielski has shown that there is a first order axiom LM (the Leibniz-Mycielski axiom) such that for any completion T of Zermelo-Fraenkel set theory ZF, T has a Leibnizian model if and only if T proves LM. Here we prove: THEOREM A. Every complete theory T extending ZF + LM has $2^{\aleph_{0}}$ nonisomorphic countable Leibnizian models. THEOREM B. If $\kappa$ is aprescribed definable infinite cardinal of a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Consistency results about ordinal definability.Kenneth McAloon - 1971 - Annals of Mathematical Logic 2 (4):449.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • New set-theoretic axioms derived from a lean metamathematics.Jan Mycielski - 1995 - Journal of Symbolic Logic 60 (1):191-198.
    Download  
     
    Export citation  
     
    Bookmark   2 citations