Switch to: Citations

Add references

You must login to add references.
  1. The old martyr of science: The frog in experimental physiology.Frederic L. Holmes - 1993 - Journal of the History of Biology 26 (2):311-328.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The Drosophila group: The transition from the mendelian unit to the individual gene.Elof Axel Carlson - 1974 - Journal of the History of Biology 7 (1):31-48.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Lords of the Fly: Drosophila Genetics and the Experimental Life.Robert E. Kohler - 1995 - Journal of the History of Biology 28 (1):167-170.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Making Mice: Standardizing Animals for American Biomedical Research, 1900-1955.Karen Rader - 2004 - Journal of the History of Biology 37 (3):588-590.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Arabidopsis to Zebrafish: A Commentary on "Rosetta Stone" Model Systems in the Biological Sciences.Howard Gest - 1995 - Perspectives in Biology and Medicine 39 (1):77-85.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Model systems in developmental biology.Jessica A. Bolker - 1995 - Bioessays 17 (5):451-455.
    The practical criteria by which developmental biologists choose their model systems have evolutionary correlates. The result is a sample that is not merely small, but biased in particular ways, for example towards species with rapid, highly canalized development. These biases influence both data collection and interpretation, and our views of how development works and which aspects of it are important.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • What’s so special about model organisms?Rachel A. Ankeny & Sabina Leonelli - 2011 - Studies in History and Philosophy of Science Part A 42 (2):313-323.
    This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target. We also examine (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Re-thinking organisms: The impact of databases on model organism biology.Sabina Leonelli & Rachel A. Ankeny - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):29-36.
    Community databases have become crucial to the collection, ordering and retrieval of data gathered on model organisms, as well as to the ways in which these data are interpreted and used across a range of research contexts. This paper analyses the impact of community databases on research practices in model organism biology by focusing on the history and current use of four community databases: FlyBase, Mouse Genome Informatics, WormBase and The Arabidopsis Information Resource. We discuss the standards used by the (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The "Light" Organism for the Job: Green Algae and Photosynthesis Research. [REVIEW]Doris T. Zallen - 1993 - Journal of the History of Biology 26 (2):269 - 279.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • How Theories Became Knowledge: Morgan's Chromosome Theory of Heredity in America and Britain. [REVIEW]Stephen G. Brush - 2002 - Journal of the History of Biology 35 (3):471-535.
    T. H. Morgan, A. H. Sturtevant, H. J. Muller and C. B. Bridges published their comprehensive treatise "The Mechanism of Mendelian Heredity" in 1915. By 1920 Morgan 's "Chromosome Theory of Heredity" was generally accepted by geneticists in the United States, and by British geneticists by 1925. By 1930 it had been incorporated into most general biology, botany, and zoology textbooks as established knowledge. In this paper, I examine the reasons why it was accepted as part of a series of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations