Switch to: Citations

Add references

You must login to add references.
  1. Admissible representations for probability measures.Matthias Schröder - 2007 - Mathematical Logic Quarterly 53 (4):431-445.
    In a recent paper, probabilistic processes are used to generate Borel probability measures on topological spaces X that are equipped with a representation in the sense of type-2 theory of effectivity. This gives rise to a natural representation of the set of Borel probability measures on X. We compare this representation to a canonically constructed representation which encodes a Borel probability measure as a lower semicontinuous function from the open sets to the unit interval. We show that this canonical representation (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • La Prévision: Ses Lois Logiques, Ses Sources Subjectives.Bruno de Finetti - 1937 - Annales de l'Institut Henri Poincaré 7 (1):1-68.
    Download  
     
    Export citation  
     
    Bookmark   213 citations  
  • Domains for computation in mathematics, physics and exact real arithmetic.Abbas Edalat - 1997 - Bulletin of Symbolic Logic 3 (4):401-452.
    We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Theory of recursive functions and effective computability.Hartley Rogers - 1987 - Cambridge: MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • Computable metrization.Tanja Grubba, Matthias Schröder & Klaus Weihrauch - 2007 - Mathematical Logic Quarterly 53 (4‐5):381-395.
    Every second-countable regular topological space X is metrizable. For a given “computable” topological space satisfying an axiom of computable regularity M. Schröder [10] has constructed a computable metric. In this article we study whether this metric space can be considered computationally as a subspace of some computable metric space [15]. While Schröder's construction is “pointless”, i. e., only sets of a countable base but no concrete points are known, for a computable metric space a concrete dense set of computable points (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations