Switch to: Citations

Add references

You must login to add references.
  1. Interleaving Logic and Counting.Johan van Benthem & Thomas Icard - 2023 - Bulletin of Symbolic Logic 29 (4):503-587.
    Reasoning with quantifier expressions in natural language combines logical and arithmetical features, transcending strict divides between qualitative and quantitative. Our topic is this cooperation of styles as it occurs in common linguistic usage and its extension into the broader practice of natural language plus ‘grassroots mathematics’.We begin with a brief review of by changing the semantics of counting in natural ways. A first approach replaces cardinalities by abstract but well-motivated values of ‘mass’ or other mereological aggregating notions. A second approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generalized quantifiers and modal logic.Wiebe Hoek & Maarten Rijke - 1993 - Journal of Logic, Language and Information 2 (1):19-58.
    We study several modal languages in which some (sets of) generalized quantifiers can be represented; the main language we consider is suitable for defining any first order definable quantifier, but we also consider a sublanguage thereof, as well as a language for dealing with the modal counterparts of some higher order quantifiers. These languages are studied both from a modal logic perspective and from a quantifier perspective. Thus the issues addressed include normal forms, expressive power, completeness both of modal systems (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The härtig quantifier: A survey.Heinrich Herre, Michał Krynicki, Alexandr Pinus & Jouko Väänänen - 1991 - Journal of Symbolic Logic 56 (4):1153-1183.
    A fundamental notion in a large part of mathematics is the notion of equicardinality. The language with Hartig quantifier is, roughly speaking, a first-order language in which the notion of equicardinality is expressible. Thus this language, denoted by LI, is in some sense very natural and has in consequence special interest. Properties of LI are studied in many papers. In [BF, Chapter VI] there is a short survey of some known results about LI. We feel that a more extensive exposition (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Generalized quantifiers and modal logic.Wiebe Van Der Hoek & Maarten De Rijke - 1993 - Journal of Logic, Language and Information 2 (1):19-58.
    We study several modal languages in which some (sets of) generalized quantifiers can be represented; the main language we consider is suitable for defining any first order definable quantifier, but we also consider a sublanguage thereof, as well as a language for dealing with the modal counterparts of some higher order quantifiers. These languages are studied both from a modal logic perspective and from a quantifier perspective. Thus the issues addressed include normal forms, expressive power, completeness both of modal systems (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Modal Logic.Patrick Blackburn, Maarten de Rijke & Yde Venema - 2001 - Studia Logica 76 (1):142-148.
    Download  
     
    Export citation  
     
    Bookmark   394 citations  
  • Qualitative probability as an intensional logic.Peter Gärdenfors - 1975 - Journal of Philosophical Logic 4 (2):171 - 185.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The logic of comparative cardinality.Yifeng Ding, Matthew Harrison-Trainor & Wesley H. Holliday - 2020 - Journal of Symbolic Logic 85 (3):972-1005.
    This paper investigates the principles that one must add to Boolean algebra to capture reasoning not only about intersection, union, and complementation of sets, but also about the relative size of sets. We completely axiomatize such reasoning under the Cantorian definition of relative size in terms of injections.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Complexity of modal logics with Presburger constraints.Stéphane Demri & Denis Lugiez - 2010 - Journal of Applied Logic 8 (3):233-252.
    Download  
     
    Export citation  
     
    Bookmark   3 citations