Switch to: Citations

Add references

You must login to add references.
  1. Can a small forcing create Kurepa trees.Renling Jin & Saharon Shelah - 1997 - Annals of Pure and Applied Logic 85 (1):47-68.
    In this paper we probe the possibilities of creating a Kurepa tree in a generic extension of a ground model of CH plus no Kurepa trees by an ω1-preserving forcing notion of size at most ω1. In Section 1 we show that in the Lévy model obtained by collapsing all cardinals between ω1 and a strongly inaccessible cardinal by forcing with a countable support Lévy collapsing order, many ω1-preserving forcing notions of size at most ω1 including all ω-proper forcing notions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing with trees and order definability.Thomas J. Jech - 1975 - Annals of Mathematical Logic 7 (4):387.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Degrees of rigidity for Souslin trees.Gunter Fuchs & Joel David Hamkins - 2009 - Journal of Symbolic Logic 74 (2):423-454.
    We investigate various strong notions of rigidity for Souslin trees, separating them under ♢ into a hierarchy. Applying our methods to the automorphism tower problem in group theory, we show under ♢ that there is a group whose automorphism tower is highly malleable by forcing.
    Download  
     
    Export citation  
     
    Bookmark   6 citations