Switch to: Citations

Add references

You must login to add references.
  1. Constructivism in Mathematics, An Introduction.A. Troelstra & D. Van Dalen - 1991 - Tijdschrift Voor Filosofie 53 (3):569-570.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Domains for computation in mathematics, physics and exact real arithmetic.Abbas Edalat - 1997 - Bulletin of Symbolic Logic 3 (4):401-452.
    We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • König's lemma, weak König's lemma, and the decidable fan theorem.Makoto Fujiwara - 2021 - Mathematical Logic Quarterly 67 (2):241-257.
    We provide a fine‐grained analysis on the relation between König's lemma, weak König's lemma, and the decidable fan theorem in the context of constructive reverse mathematics. In particular, we show that double negated variants of König's lemma and weak König's lemma are equivalent to double negated variants of the general decidable fan theorem and the binary decidable fan theorem, respectively, over a nearly intuitionistic system containing a weak countable choice only. This implies that the general decidable fan theorem is not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sequences of real functions on [0, 1] in constructive reverse mathematics.Hannes Diener & Iris Loeb - 2009 - Annals of Pure and Applied Logic 157 (1):50-61.
    We give an overview of the role of equicontinuity of sequences of real-valued functions on [0,1] and related notions in classical mathematics, intuitionistic mathematics, Bishop’s constructive mathematics, and Russian recursive mathematics. We then study the logical strength of theorems concerning these notions within the programme of Constructive Reverse Mathematics. It appears that many of these theorems, like a version of Ascoli’s Lemma, are equivalent to fan-theoretic principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Equivalents of the (weak) fan theorem.Iris Loeb - 2005 - Annals of Pure and Applied Logic 132 (1):51-66.
    This article presents a weak system of intuitionistic second-order arithmetic, WKV, a subsystem of the one in S.C. Kleene, R.E. Vesley [The Foundations of Intuitionistic Mathematics: Especially in Relation to Recursive Functions, North-Holland Publishing Company, Amsterdam, 1965]. It is then shown that some statements of real analysis, like a version of the Heine–Borel Theorem, and some statements of logic, e.g. compactness of classical proposition calculus, are equivalent to the Fan Theorem in this system.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Foundations of Constructive Mathematics. Metamathematical Studies.Michael J. Beeson - 1987 - Journal of Symbolic Logic 52 (1):278-279.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Equivalence of bar induction and bar recursion for continuous functions with continuous moduli.Makoto Fujiwara & Tatsuji Kawai - 2019 - Annals of Pure and Applied Logic 170 (8):867-890.
    Download  
     
    Export citation  
     
    Bookmark   2 citations