Switch to: Citations

Add references

You must login to add references.
  1. Behavioristic, evidentialist, and learning models of statistical testing.Deborah G. Mayo - 1985 - Philosophy of Science 52 (4):493-516.
    While orthodox (Neyman-Pearson) statistical tests enjoy widespread use in science, the philosophical controversy over their appropriateness for obtaining scientific knowledge remains unresolved. I shall suggest an explanation and a resolution of this controversy. The source of the controversy, I argue, is that orthodox tests are typically interpreted as rules for making optimal decisions as to how to behave--where optimality is measured by the frequency of errors the test would commit in a long series of trials. Most philosophers of statistics, however, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Error and the Growth of Experimental Knowledge.Deborah G. Mayo - 1996 - University of Chicago.
    This text provides a critique of the subjective Bayesian view of statistical inference, and proposes the author's own error-statistical approach as an alternative framework for the epistemology of experiment. It seeks to address the needs of researchers who work with statistical analysis.
    Download  
     
    Export citation  
     
    Bookmark   228 citations  
  • Error and the growth of experimental knowledge.Deborah Mayo - 1996 - International Studies in the Philosophy of Science 15 (1):455-459.
    Download  
     
    Export citation  
     
    Bookmark   327 citations  
  • Statistical Inference.G. Casella & R. L. Berger - 2002 - Thomson Learning.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Error and the Growth of Experimental Knowledge.Deborah Mayo - 1997 - British Journal for the Philosophy of Science 48 (3):455-459.
    Download  
     
    Export citation  
     
    Bookmark   225 citations  
  • An error in the argument from conditionality and sufficiency to the likelihood principle.Deborah G. Mayo - 2009 - In Deborah G. Mayo & Aris Spanos (eds.), Error and Inference: Recent Exchanges on Experimental Reasoning, Reliability, and the Objectivity and Rationality of Science. New York: Cambridge University Press. pp. 305.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frequentist statistics as a theory of inductive inference.Deborah G. Mayo & David Cox - 2009 - In Deborah G. Mayo & Aris Spanos (eds.), Error and Inference: Recent Exchanges on Experimental Reasoning, Reliability, and the Objectivity and Rationality of Science. New York: Cambridge University Press.
    After some general remarks about the interrelation between philosophical and statistical thinking, the discussion centres largely on significance tests. These are defined as the calculation of p-values rather than as formal procedures for ‘acceptance‘ and ‘rejection‘. A number of types of null hypothesis are described and a principle for evidential interpretation set out governing the implications of p- values in the specific circumstances of each application, as contrasted with a long-run interpretation. A number of more complicated situ- ations are discussed (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On the Foundations of Statistical Inference.Allan Birnbaum - 1962 - Journal of the American Statistical Association 57 (298):269--306.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Did Pearson reject the Neyman-Pearson philosophy of statistics?Deborah G. Mayo - 1992 - Synthese 90 (2):233 - 262.
    I document some of the main evidence showing that E. S. Pearson rejected the key features of the behavioral-decision philosophy that became associated with the Neyman-Pearson Theory of statistics (NPT). I argue that NPT principles arose not out of behavioral aims, where the concern is solely with behaving correctly sufficiently often in some long run, but out of the epistemological aim of learning about causes of experimental results (e.g., distinguishing genuine from spurious effects). The view Pearson did hold gives a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Error and the Growth of Experimental Knowledge.Michael Kruse & Deborah G. Mayo - 1998 - Philosophical Review 107 (2):324.
    Once upon a time, logic was the philosopher’s tool for analyzing scientific reasoning. Nowadays, probability and statistics have largely replaced logic, and their most popular application—Bayesianism—has replaced the qualitative deductive relationship between a hypothesis h and evidence e with a quantitative measure of h’s probability in light of e.
    Download  
     
    Export citation  
     
    Bookmark   11 citations