Switch to: Citations

Add references

You must login to add references.
  1. Semantical Investigations in Heyting's Intuitionistic Logic.Dov M. Gabbay - 1986 - Journal of Symbolic Logic 51 (3):824-824.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Conceptual completeness for first-order Intuitionistic logic: an application of categorical logic.Andrew M. Pitts - 1989 - Annals of Pure and Applied Logic 41 (1):33-81.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On an interpretation of second order quantification in first order intuitionistic propositional logic.Andrew M. Pitts - 1992 - Journal of Symbolic Logic 57 (1):33-52.
    We prove the following surprising property of Heyting's intuitionistic propositional calculus, IpC. Consider the collection of formulas, φ, built up from propositional variables (p,q,r,...) and falsity $(\perp)$ using conjunction $(\wedge)$ , disjunction (∨) and implication (→). Write $\vdash\phi$ to indicate that such a formula is intuitionistically valid. We show that for each variable p and formula φ there exists a formula Apφ (effectively computable from φ), containing only variables not equal to p which occur in φ, and such that for (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Completeness results for intuitionistic and modal logic in a categorical setting.M. Makkai & G. E. Reyes - 1995 - Annals of Pure and Applied Logic 72 (1):25-101.
    Versions and extensions of intuitionistic and modal logic involving biHeyting and bimodal operators, the axiom of constant domains and Barcan's formula, are formulated as structured categories. Representation theorems for the resulting concepts are proved. Essentially stronger versions, requiring new methods of proof, of known completeness theorems are consequences. A new type of completeness result, with a topos theoretic character, is given for theories satisfying a condition considered by Lawvere . The completeness theorems are used to conclude results asserting that certain (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A sheaf representation and duality for finitely presented Heyting algebras.Silvio Ghilardi & Marek Zawadowski - 1995 - Journal of Symbolic Logic 60 (3):911-939.
    A. M. Pitts in [Pi] proved that HA op fp is a bi-Heyting category satisfying the Lawrence condition. We show that the embedding $\Phi: HA^\mathrm{op}_\mathrm{fp} \longrightarrow Sh(\mathbf{P_0,J_0})$ into the topos of sheaves, (P 0 is the category of finite rooted posets and open maps, J 0 the canonical topology on P 0 ) given by $H \longmapsto HA(H,\mathscr{D}(-)): \mathbf{P_0} \longrightarrow \text{Set}$ preserves the structure mentioned above, finite coproducts, and subobject classifier, it is also conservative. This whole structure on HA op (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations