Switch to: Citations

Add references

You must login to add references.
  1. Fragility and indestructibility of the tree property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.
    We prove various theorems about the preservation and destruction of the tree property at ω2. Working in a model of Mitchell [9] where the tree property holds at ω2, we prove that ω2 still has the tree property after ccc forcing of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} or adding an arbitrary number of Cohen reals. We show that there is a relatively mild forcing in this same model which destroys the tree property. Finally we (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Morasses and the lévy-collapse.P. Komjáth - 1987 - Journal of Symbolic Logic 52 (1):111-115.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • 0♯ and some forcing principles.Matthew Foreman, Menachem Magidor & Saharon Shelah - 1986 - Journal of Symbolic Logic 51 (1):39 - 46.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On foreman’s maximality principle.Mohammad Golshani & Yair Hayut - 2016 - Journal of Symbolic Logic 81 (4):1344-1356.
    Download  
     
    Export citation  
     
    Bookmark   1 citation