Switch to: Citations

Add references

You must login to add references.
  1. Causality: Models, reasoning and inference.Christopher Hitchcock - 2001 - Philosophical Review 110 (4):639-641.
    book reveiw van boek met gelijknamige titel van Judea Pearl.
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • (3 other versions)Causal learning: psychology, philosophy, and computation.Alison Gopnik & Laura Schulz (eds.) - 2007 - New York: Oxford University Press.
    Understanding causal structure is a central task of human cognition. Causal learning underpins the development of our concepts and categories, our intuitive theories, and our capacities for planning, imagination and inference. During the last few years, there has been an interdisciplinary revolution in our understanding of learning and reasoning: Researchers in philosophy, psychology, and computation have discovered new mechanisms for learning the causal structure of the world. This new work provides a rigorous, formal basis for theory theories of concepts and (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • (1 other version)Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - New York: Cambridge University Press.
    Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence, business, epidemiology, social science and economics.
    Download  
     
    Export citation  
     
    Bookmark   704 citations  
  • A Theory of Causal Learning in Children: Causal Maps and Bayes Nets.Alison Gopnik, Clark Glymour, Laura Schulz, Tamar Kushnir & David Danks - 2004 - Psychological Review 111 (1):3-32.
    We propose that children employ specialized cognitive systems that allow them to recover an accurate “causal map” of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or “Bayes nets”. Children’s causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children (...)
    Download  
     
    Export citation  
     
    Bookmark   239 citations  
  • Just do it? Investigating the gap between prediction and action in toddlers’ causal inferences.Elizabeth Baraff Bonawitz, Darlene Ferranti, Rebecca Saxe, Alison Gopnik, Andrew N. Meltzoff, James Woodward & Laura E. Schulz - 2010 - Cognition 115 (1):104-117.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Children's causal inferences from indirect evidence: Backwards blocking and Bayesian reasoning in preschoolers.D. Sobel - 2004 - Cognitive Science 28 (3):303-333.
    Previous research suggests that children can infer causal relations from patterns of events. However, what appear to be cases of causal inference may simply reduce to children recognizing relevant associations among events, and responding based on those associations. To examine this claim, in Experiments 1 and 2, children were introduced to a “blicket detector,” a machine that lit up and played music when certain objects were placed upon it. Children observed patterns of contingency between objects and the machine's activation that (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Going beyond the evidence: Abstract laws and preschoolers’ responses to anomalous data.Laura E. Schulz, Noah D. Goodman, Joshua B. Tenenbaum & Adrianna C. Jenkins - 2008 - Cognition 109 (2):211-223.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Children’s imitation of causal action sequences is influenced by statistical and pedagogical evidence.Daphna Buchsbaum, Alison Gopnik, Thomas L. Griffiths & Patrick Shafto - 2011 - Cognition 120 (3):331-340.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Review: The Grand Leap; Reviewed Work: Causation, Prediction, and Search. [REVIEW]Peter Spirtes, Clark Glymour & Richard Scheines - 1996 - British Journal for the Philosophy of Science 47 (1):113-123.
    Download  
     
    Export citation  
     
    Bookmark   438 citations  
  • Data-mining probabilists or experimental determinists.Thomas Richardson, Laura Schulz & Alison Gopnik - 2007 - In Alison Gopnik & Laura Schulz (eds.), Causal learning: psychology, philosophy, and computation. New York: Oxford University Press. pp. 208--230.
    Download  
     
    Export citation  
     
    Bookmark   18 citations