Switch to: Citations

Add references

You must login to add references.
  1. Understanding pluralism in climate modeling.Wendy Parker - 2006 - Foundations of Science 11 (4):349-368.
    To study Earth’s climate, scientists now use a variety of computer simulation models. These models disagree in some of their assumptions about the climate system, yet they are used together as complementary resources for investigating future climatic change. This paper examines and defends this use of incompatible models. I argue that climate model pluralism results both from uncertainty concerning how to best represent the climate system and from difficulties faced in evaluating the relative merits of complex models. I describe how (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Mathematical formalisms in scientific practice: From denotation to model-based representation.Axel Gelfert - 2011 - Studies in History and Philosophy of Science Part A 42 (2):272-286.
    The present paper argues that ‘mature mathematical formalisms’ play a central role in achieving representation via scientific models. A close discussion of two contemporary accounts of how mathematical models apply—the DDI account (according to which representation depends on the successful interplay of denotation, demonstration and interpretation) and the ‘matching model’ account—reveals shortcomings of each, which, it is argued, suggests that scientific representation may be ineliminably heterogeneous in character. In order to achieve a degree of unification that is compatible with successful (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Representing with imaginary models: Formats matter.Marion Vorms - 2011 - Studies in History and Philosophy of Science Part A 42 (2):287-295.
    Models such as the simple pendulum, isolated populations, and perfectly rational agents, play a central role in theorising. It is now widely acknowledged that a study of scientific representation should focus on the role of such imaginary entities in scientists’ reasoning. However, the question is most of the time cast as follows: How can fictional or abstract entities represent the phenomena? In this paper, I show that this question is not well posed. First, I clarify the notion of representation, and (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Flowering of Applied Mathematics in America.Peter D. Lax, George D. Mostow, American Mathematical Society & Mathematical Association of America - 1989
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Experimenting on Theories.Deborah Dowling - 1999 - Science in Context 12 (2):261-273.
    The ArgumentThis paper sets out a framework for understanding how the scientific community constructs computer simulation as an epistemically and pragmatically useful methodology. The framework is based on comparisons between simulation and the loosely-defined categories of “theoretical work” and “experimental work.” Within that framework, the epistemological adequacy of simulation arises from its role as a mathematical manipulation of a complex, abstract theoretical model. To establish that adequacy demands a detailed “theoretical” grasp of the internal structure of the computer program. Simultaneously, (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Models, Simulations, and Their Objects.Sergio Sismondo - 1999 - Science in Context 12 (2):247-260.
    Download  
     
    Export citation  
     
    Bookmark   38 citations