Switch to: Citations

Add references

You must login to add references.
  1. Effective Borel measurability and reducibility of functions.Vasco Brattka - 2005 - Mathematical Logic Quarterly 51 (1):19-44.
    The investigation of computational properties of discontinuous functions is an important concern in computable analysis. One method to deal with this subject is to consider effective variants of Borel measurable functions. We introduce such a notion of Borel computability for single-valued as well as for multi-valued functions by a direct effectivization of the classical definition. On Baire space the finite levels of the resulting hierarchy of functions can be characterized using a notion of reducibility for functions and corresponding complete functions. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Definability of the jump operator in the enumeration degrees.I. Sh Kalimullin - 2003 - Journal of Mathematical Logic 3 (02):257-267.
    We show that the e-degree 0'e and the map u ↦ u' are definable in the upper semilattice of all e-degrees. The class of total e-degrees ≥0'e is also definable.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Degrees of Unsolvability of Continuous Functions.Joseph S. Miller - 2004 - Journal of Symbolic Logic 69 (2):555 - 584.
    We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results are proved: a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Decomposing Borel functions and structure at finite levels of the Baire hierarchy.Janusz Pawlikowski & Marcin Sabok - 2012 - Annals of Pure and Applied Logic 163 (12):1748-1764.
    We prove that if f is a partial Borel function from one Polish space to another, then either f can be decomposed into countably many partial continuous functions, or else f contains the countable infinite power of a bijection that maps a convergent sequence together with its limit onto a discrete space. This is a generalization of a dichotomy discovered by Solecki for Baire class 1 functions. As an application, we provide a characterization of functions which are countable unions of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A classification of jump operator.John R. Steel - 1982 - Journal of Symbolic Logic 47 (2):347-358.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the Structure of Finite Level and ω-Decomposable Borel Functions.Luca Motto Ros - 2013 - Journal of Symbolic Logic 78 (4):1257-1287.
    Download  
     
    Export citation  
     
    Bookmark   3 citations