Switch to: Citations

Add references

You must login to add references.
  1. Quanta transfer in quantized space.Sydney Ernest Grimm - manuscript
    Physical phenomena emerge from the quantum fields everywhere in space. However, not only the phenomena emerge from the quantum fields, the law of the conservation of energy must have its origin from the same spatial structure. This paper describes the relations between the main law of physics, the universal constants and the mathematical structure of the “aggregated” quantum fields.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the concept of (quantum) fields.Sydney Ernest Grimm - manuscript
    The main concept of quantum field theory is the conviction that all the phenomena in the universe are created by the underlying structure of the quantum fields. Fields represent dynamical spatial properties that can be described with the help of geometrical concepts. Therefore it is possible to describe the mathematical origin of the structure of the creating fields and show the mathematical origin of the law of conservation of energy, Planck’s constant and the constant speed of light within a non-local (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • There are no particles, there are only fields.Art Hobson - 2012 - American Journal of Physics 81:211.
    Quantum foundations are still unsettled, with mixed effects on science and society. By now it should be possible to obtain consensus on at least one issue: Are the fundamental constituents fields or particles? As this paper shows, experiment and theory imply unbounded fields, not bounded particles, are fundamental. This is especially clear for relativistic systems, implying it's also true of non-relativistic systems. Particles are epiphenomena arising from fields. Thus the Schroedinger field is a space-filling physical field whose value at any (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations