Switch to: Citations

References in:

Two proposals for causal grammars

In Alison Gopnik & Laura Schulz, Causal learning: psychology, philosophy, and computation. New York: Oxford University Press. pp. 323--345 (2007)

Add references

You must login to add references.
  1. Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - New York: Cambridge University Press.
    Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence, business, epidemiology, social science and economics.
    Download  
     
    Export citation  
     
    Bookmark   790 citations  
  • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Judea Pearl - 1988 - Morgan Kaufmann.
    The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
    Download  
     
    Export citation  
     
    Bookmark   423 citations  
  • Causality: Models, Reasoning and Inference.Judea Pearl - 2000 - Tijdschrift Voor Filosofie 64 (1):201-202.
    Download  
     
    Export citation  
     
    Bookmark   875 citations  
  • A Theory of Causal Learning in Children: Causal Maps and Bayes Nets.Alison Gopnik, Clark Glymour, Laura Schulz, Tamar Kushnir & David Danks - 2004 - Psychological Review 111 (1):3-32.
    We propose that children employ specialized cognitive systems that allow them to recover an accurate “causal map” of the world: an abstract, coherent, learned representation of the causal relations among events. This kind of knowledge can be perspicuously understood in terms of the formalism of directed graphical causal models, or “Bayes nets”. Children’s causal learning and inference may involve computations similar to those for learning causal Bayes nets and for predicting with them. Experimental results suggest that 2- to 4-year-old children (...)
    Download  
     
    Export citation  
     
    Bookmark   240 citations  
  • From covariation to causation: A causal power theory.Patricia Cheng - 1997 - Psychological Review 104 (2):367-405.
    Download  
     
    Export citation  
     
    Bookmark   233 citations  
  • Theory-based causal induction.Thomas L. Griffiths & Joshua B. Tenenbaum - 2009 - Psychological Review 116 (4):661-716.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition.Dan Jurafsky & James H. Martin - 2000 - Prentice-Hall.
    The first of its kind to thoroughly cover language technology at all levels and with all modern technologies this book takes an empirical approach to the ...
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Children's causal inferences from indirect evidence: Backwards blocking and Bayesian reasoning in preschoolers.D. Sobel - 2004 - Cognitive Science 28 (3):303-333.
    Previous research suggests that children can infer causal relations from patterns of events. However, what appear to be cases of causal inference may simply reduce to children recognizing relevant associations among events, and responding based on those associations. To examine this claim, in Experiments 1 and 2, children were introduced to a “blicket detector,” a machine that lit up and played music when certain objects were placed upon it. Children observed patterns of contingency between objects and the machine's activation that (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Causal Learning Mechanisms in Very Young Children: Two-, Three-, and Four-Year-Olds Infer Causal Relations From Patterns of Variation and Covariation.Clark Glymour, Alison Gopnik, David M. Sobel & Laura E. Schulz - unknown
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Children's causal inferences from indirect evidence: Backwards blocking and Bayesian reasoning in preschoolers.Alison Gopnik - 2004 - Cognitive Science 28 (3):303-333.
    Previous research suggests that children can infer causal relations from patterns of events. However, what appear to be cases of causal inference may simply reduce to children recognizing relevant associations among events, and responding based on those associations. To examine this claim, in Experiments 1 and 2, children were introduced to a “blicket detector”, a machine that lit up and played music when certain objects were placed upon it. Children observed patterns of contingency between objects and the machine’s activation that (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Foundations of Statistical Natural Language Processing.Christopher Manning & Hinrich Schutze - 1999 - MIT Press.
    Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • A Mathematical Introduction to Logic.Herbert Enderton - 2001 - Bulletin of Symbolic Logic 9 (3):406-407.
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • Review: The Grand Leap; Reviewed Work: Causation, Prediction, and Search. [REVIEW]Peter Spirtes, Clark Glymour & Richard Scheines - 1996 - British Journal for the Philosophy of Science 47 (1):113-123.
    Download  
     
    Export citation  
     
    Bookmark   439 citations  
  • The Understanding of Causation and the Production of Action: From Infancy to Adulthood.Peter Anthony White - 1995 - Psychology Press.
    Although the developmental and adult literatures on causal understanding appear at first glance to have little in common, in fact this appearance is illusory, and the idea of two theories helps to bring the two literatures in contact with each other.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (3 other versions)The Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology. [REVIEW]C. Hitchcock - 2003 - Mind 112 (446):340-343.
    Download  
     
    Export citation  
     
    Bookmark   34 citations