Switch to: Citations

Add references

You must login to add references.
  1. Galois-stability for Tame abstract elementary classes.Rami Grossberg & Monica Vandieren - 2006 - Journal of Mathematical Logic 6 (01):25-48.
    We introduce tame abstract elementary classes as a generalization of all cases of abstract elementary classes that are known to permit development of stability-like theory. In this paper, we explore stability results in this new context. We assume that [Formula: see text] is a tame abstract elementary class satisfying the amalgamation property with no maximal model. The main results include:. Theorem 0.1. Suppose that [Formula: see text] is not only tame, but [Formula: see text]-tame. If [Formula: see text] and [Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Erratum to “Categoricity in abstract elementary classes with no maximal models” [Ann. Pure Appl. Logic 141 (2006) 108–147].Monica M. VanDieren - 2013 - Annals of Pure and Applied Logic 164 (2):131-133.
    In the paper “Categoricity in abstract elementary classes with no maximal models”, we address gaps in Saharon Shelah and Andrés Villavecesʼ proof in [4] of the uniqueness of limit models of cardinality μ in λ-categorical abstract elementary classes with no maximal models, where λ is some cardinal larger than μ. Both [4] and [5] employ set theoretic assumptions, namely GCH and Φμ+μ+).Recently, Tapani Hyttinen pointed out a problem in an early draft of [3] to Villaveces. This problem stems from the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Limit models in metric abstract elementary classes: the categorical case.Andrés Villaveces & Pedro Zambrano - 2016 - Mathematical Logic Quarterly 62 (4-5):319-334.
    We study versions of limit models adapted to the context of metric abstract elementary classes. Under categoricity and superstability-like assumptions, we generalize some theorems from 7, 15-17. We prove criteria for existence and uniqueness of limit models in the metric context.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Finite diagrams stable in power.Saharon Shelah - 1970 - Annals of Mathematical Logic 2 (1):69-118.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Toward categoricity for classes with no maximal models.Saharon Shelah & Andrés Villaveces - 1999 - Annals of Pure and Applied Logic 97 (1-3):1-25.
    We provide here the first steps toward a Classification Theory ofElementary Classes with no maximal models, plus some mild set theoretical assumptions, when the class is categorical in some λ greater than its Löwenheim-Skolem number. We study the degree to which amalgamation may be recovered, the behaviour of non μ-splitting types. Most importantly, the existence of saturated models in a strong enough sense is proved, as a first step toward a complete solution to the o Conjecture for these classes. Further (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Independence in finitary abstract elementary classes.Tapani Hyttinen & Meeri Kesälä - 2006 - Annals of Pure and Applied Logic 143 (1-3):103-138.
    In this paper we study a specific subclass of abstract elementary classes. We construct a notion of independence for these AEC’s and show that under simplicity the notion has all the usual properties of first order non-forking over complete types. Our approach generalizes the context of 0-stable homogeneous classes and excellent classes. Our set of assumptions follow from disjoint amalgamation, existence of a prime model over 0/, Löwenheim–Skolem number being ω, -tameness and a property we call finite character. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Upward Categoricity from a Successor Cardinal for Tame Abstract Classes with Amalgamation.Olivier Lessmann - 2005 - Journal of Symbolic Logic 70 (2):639 - 660.
    This paper is devoted to the proof of the following upward categoricity theorem: Let K be a tame abstract elementary class with amalgamation, arbitrarily large models, and countable Löwenheim-Skolem number. If K is categorical in ‮א‬₁ then K is categorical in every uncountable cardinal. More generally, we prove that if K is categorical in a successor cardinal λ⁺ then K is categorical everywhere above λ⁺.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Around independence and domination in metric abstract elementary classes: assuming uniqueness of limit models.Andrés Villaveces & Pedro Zambrano - 2014 - Mathematical Logic Quarterly 60 (3):211-227.
    We study notions of independence appropriate for a stability theory of metric abstract elementary classes (for short, MAECs). We build on previous notions used in the discrete case, and adapt definitions to the metric case. In particular, we study notions that behave well under superstability‐like assumptions. Also, under uniqueness of limit models, we study domination, orthogonality and parallelism of Galois types in MAECs.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Categoricity from one successor cardinal in Tame abstract elementary classes.Rami Grossberg & Monica Vandieren - 2006 - Journal of Mathematical Logic 6 (2):181-201.
    We prove that from categoricity in λ+ we can get categoricity in all cardinals ≥ λ+ in a χ-tame abstract elementary classe [Formula: see text] which has arbitrarily large models and satisfies the amalgamation and joint embedding properties, provided [Formula: see text] and λ ≥ χ. For the missing case when [Formula: see text], we prove that [Formula: see text] is totally categorical provided that [Formula: see text] is categorical in [Formula: see text] and [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Symmetry and the union of saturated models in superstable abstract elementary classes.M. M. VanDieren - 2016 - Annals of Pure and Applied Logic 167 (4):395-407.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Categoricity in abstract elementary classes with no maximal models.Monica VanDieren - 2006 - Annals of Pure and Applied Logic 141 (1):108-147.
    The results in this paper are in a context of abstract elementary classes identified by Shelah and Villaveces in which the amalgamation property is not assumed. The long-term goal is to solve Shelah’s Categoricity Conjecture in this context. Here we tackle a problem of Shelah and Villaveces by proving that in their context, the uniqueness of limit models follows from categoricity under the assumption that the subclass of amalgamation bases is closed under unions of bounded, -increasing chains.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Shelah's stability spectrum and homogeneity spectrum in finite diagrams.Rami Grossberg & Olivier Lessmann - 2002 - Archive for Mathematical Logic 41 (1):1-31.
    We present Saharon Shelah's Stability Spectrum and Homogeneity Spectrum theorems, as well as the equivalence between the order property and instability in the framework of Finite Diagrams. Finite Diagrams is a context which generalizes the first order case. Localized versions of these theorems are presented. Our presentation is based on several papers; the point of view is contemporary and some of the proofs are new. The treatment of local stability in Finite Diagrams is new.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Categoricity for abstract classes with amalgamation.Saharon Shelah - 1999 - Annals of Pure and Applied Logic 98 (1-3):261-294.
    Let be an abstract elementary class with amalgamation, and Lowenheim Skolem number LS. We prove that for a suitable Hanf number gc0 if χ0 < λ0 λ1, and is categorical inλ1+ then it is categorical in λ0.
    Download  
     
    Export citation  
     
    Bookmark   55 citations