Switch to: Citations

Add references

You must login to add references.
  1. Weak comparability of well orderings and reverse mathematics.Harvey M. Friedman & Jeffry L. Hirst - 1990 - Annals of Pure and Applied Logic 47 (1):11-29.
    Two countable well orderings are weakly comparable if there is an order preserving injection of one into the other. We say the well orderings are strongly comparable if the injection is an isomorphism between one ordering and an initial segment of the other. In [5], Friedman announced that the statement “any two countable well orderings are strongly comparable” is equivalent to ATR 0 . Simpson provides a detailed proof of this result in Chapter 5 of [13]. More recently, Friedman has (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Which set existence axioms are needed to prove the cauchy/peano theorem for ordinary differential equations?Stephen G. Simpson - 1984 - Journal of Symbolic Logic 49 (3):783-802.
    We investigate the provability or nonprovability of certain ordinary mathematical theorems within certain weak subsystems of second order arithmetic. Specifically, we consider the Cauchy/Peano existence theorem for solutions of ordinary differential equations, in the context of the formal system RCA 0 whose principal axioms are ▵ 0 1 comprehension and Σ 0 1 induction. Our main result is that, over RCA 0 , the Cauchy/Peano Theorem is provably equivalent to weak Konig's lemma, i.e. the statement that every infinite {0, 1}-tree (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Ordinal inequalities, transfinite induction, and reverse mathematics.Jeffry L. Hirst - 1999 - Journal of Symbolic Logic 64 (2):769-774.
    If α and β are ordinals, α ≤ β, and $\beta \nleq \alpha$ , then α + 1 ≤ β. The first result of this paper shows that the restriction of this statement to countable well orderings is provably equivalent to ACA 0 , a subsystem of second order arithmetic introduced by Friedman. The proof of the equivalence is reminiscent of Dekker's construction of a hypersimple set. An application of the theorem yields the equivalence of the set comprehension scheme ACA (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations