Switch to: Citations

References in:

What paradoxes depend on

Synthese 197 (2):887-913 (2020)

Add references

You must login to add references.
  1. Paradox without Self-Reference.Stephen Yablo - 1993 - Analysis 53 (4):251-252.
    Download  
     
    Export citation  
     
    Bookmark   205 citations  
  • Truth and reflection.Stephen Yablo - 1985 - Journal of Philosophical Logic 14 (3):297 - 349.
    Many topics have not been covered, in most cases because I don't know quite what to say about them. Would it be possible to add a decidability predicate to the language? What about stronger connectives, like exclusion negation or Lukasiewicz implication? Would an expanded language do better at expressing its own semantics? Would it contain new and more terrible paradoxes? Can the account be supplemented with a workable notion of inherent truth (see note 36)? In what sense does stage semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Axiomatic Theories of Truth.Volker Halbach - 2010 - Cambridge, England: Cambridge University Press.
    At the centre of the traditional discussion of truth is the question of how truth is defined. Recent research, especially with the development of deflationist accounts of truth, has tended to take truth as an undefined primitive notion governed by axioms, while the liar paradox and cognate paradoxes pose problems for certain seemingly natural axioms for truth. In this book, Volker Halbach examines the most important axiomatizations of truth, explores their properties and shows how the logical results impinge on the (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth.P. Schlenker - 2007 - Journal of Philosophical Logic 36 (3):251-307.
    Although it was traditionally thought that self-reference is a crucial ingredient of semantic paradoxes, Yablo (1993, 2004) showed that this was not so by displaying an infinite series of sentences none of which is self-referential but which, taken together, are paradoxical. Yablo's paradox consists of a countable series of linearly ordered sentences s(0), s(1), s(2),... , where each s(i) says: For each k > i, s(k) is false (or equivalently: For no k > i is s(k) true). We generalize Yablo's (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Yablo Paradox: An Essay on Circularity.Roy T. Cook - 2012 - Oxford, England: Oxford University Press.
    Roy T Cook examines the Yablo paradox--a paradoxical, infinite sequence of sentences, each of which entails the falsity of all others that follow it. He focuses on questions of characterization, circularity, and generalizability, and pays special attention to the idea that it provides us with a semantic paradox that involves no circularity.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On Paradox without Self-Reference.Neil Tennant - 1995 - Analysis 55 (3):199 - 207.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Notes on naive semantics.Hans Herzberger - 1982 - Journal of Philosophical Logic 11 (1):61 - 102.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • (1 other version)Truth and paradox.Anil Gupta - 1982 - Journal of Philosophical Logic 11 (1):1-60.
    Download  
     
    Export citation  
     
    Bookmark   156 citations  
  • Boolean Paradoxes and Revision Periods.Ming Hsiung - 2017 - Studia Logica 105 (5):881-914.
    According to the revision theory of truth, the paradoxical sentences have certain revision periods in their valuations with respect to the stages of revision sequences. We find that the revision periods play a key role in characterizing the degrees of paradoxicality for Boolean paradoxes. We prove that a Boolean paradox is paradoxical in a digraph, iff this digraph contains a closed walk whose height is not any revision period of this paradox. And for any finitely many numbers greater than 1, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Patterns of paradox.Roy T. Cook - 2004 - Journal of Symbolic Logic 69 (3):767-774.
    We begin with a prepositional languageLpcontaining conjunction (Λ), a class of sentence names {Sα}αϵA, and a falsity predicateF. We (only) allow unrestricted infinite conjunctions, i.e., given any non-empty class of sentence names {Sβ}βϵB,is a well-formed formula (we will useWFFto denote the set of well-formed formulae).The language, as it stands, is unproblematic. Whether various paradoxes are produced depends on which names are assigned to which sentences. What is needed is a denotation function:For example, theLPsentence “F(S1)” (i.e.,Λ{F(S1)}), combined with a denotation functionδsuch (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • How to eliminate self-reference: a précis.Philippe Schlenker - 2007 - Synthese 158 (1):127-138.
    We provide a systematic recipe for eliminating self-reference from a simple language in which semantic paradoxes (whether purely logical or empirical) can be expressed. We start from a non-quantificational language L which contains a truth predicate and sentence names, and we associate to each sentence F of L an infinite series of translations h 0(F), h 1(F), ..., stated in a quantificational language L *. Under certain conditions, we show that none of the translations is self-referential, but that any one (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations