Switch to: Citations

Add references

You must login to add references.
  1. Undefinability of propositional quantifiers in the modal system S.Silvio Ghilardi & Marek Zawadowski - 1995 - Studia Logica 55 (2):259 - 271.
    We show that (contrary to the parallel case of intuitionistic logic, see [7], [4]) there does not exist a translation fromS42 (the propositional modal systemS4 enriched with propositional quantifiers) intoS4 that preserves provability and reduces to identity for Boolean connectives and.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Uniform Interpolation and Propositional Quantifiers in Modal Logics.Marta Bílková - 2007 - Studia Logica 85 (1):1-31.
    We investigate uniform interpolants in propositional modal logics from the proof-theoretical point of view. Our approach is adopted from Pitts’ proof of uniform interpolationin intuitionistic propositional logic [15]. The method is based on a simulation of certain quantifiers ranging over propositional variables and uses a terminating sequent calculus for which structural rules are admissible.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On an interpretation of second order quantification in first order intuitionistic propositional logic.Andrew M. Pitts - 1992 - Journal of Symbolic Logic 57 (1):33-52.
    We prove the following surprising property of Heyting's intuitionistic propositional calculus, IpC. Consider the collection of formulas, φ, built up from propositional variables (p,q,r,...) and falsity $(\perp)$ using conjunction $(\wedge)$ , disjunction (∨) and implication (→). Write $\vdash\phi$ to indicate that such a formula is intuitionistically valid. We show that for each variable p and formula φ there exists a formula Apφ (effectively computable from φ), containing only variables not equal to p which occur in φ, and such that for (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Subalgebras of Diagonalizable Algebras of Theories Containing Arithmetic.Vladimir I͡U Shavrukov - 1993
    Download  
     
    Export citation  
     
    Bookmark   9 citations