Switch to: Citations

Add references

You must login to add references.
  1. Nonexistence of minimal pairs for generic computability.Gregory Igusa - 2013 - Journal of Symbolic Logic 78 (2):511-522.
    A generic computation of a subset $A$ of $\mathbb{N}$ consists of a computation that correctly computes most of the bits of $A$, and never incorrectly computes any bits of $A$, but which does not necessarily give an answer for every input. The motivation for this concept comes from group theory and complexity theory, but the purely recursion theoretic analysis proves to be interesting, and often counterintuitive. The primary result of this paper is that there are no minimal pairs for generic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations