Switch to: Citations

Add references

You must login to add references.
  1. Fields of finite Morley rank.Frank Wagner - 2001 - Journal of Symbolic Logic 66 (2):703-706.
    If K is a field of finite Morley rank, then for any parameter set $A \subseteq K^{eq}$ the prime model over A is equal to the model-theoretic algebraic closure of A. A field of finite Morley rank eliminates imaginaries. Simlar results hold for minimal groups of finite Morley rank with infinite acl( $\emptyset$ ).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Tores et p-groupes.Aleksandr Vasilievich Borovik & Bruno Petrovich Poizat - 1990 - Journal of Symbolic Logic 55 (2):478-491.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Liftez Les sylows! Une suite à "sous-groupes périodiques d'un groupe stable".Bruno Poizat & Frank O. Wagner - 2000 - Journal of Symbolic Logic 65 (2):703-704.
    If G is an omega-stable group with a normal definable subgroup H, then the Sylow-2-subgroups of G/H are the images of the Sylow-2-subgroups of G. /// Sei G eine omega-stabile Gruppe und H ein definierbarer Normalteiler von G. Dann sind die Sylow-2-Untergruppen von G/H Bilder der Sylow-2-Untergruppen von G.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Groups of small Morley rank.Gregory Cherlin - 1979 - Annals of Mathematical Logic 17 (1):1.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (2 other versions)L'égalité au cube.Bruno Poizat - 2001 - Journal of Symbolic Logic 66 (4):1647-1676.
    Ni konstruas nun malbonajn korpojn, kun malfinita Morleya ranko, kiuj estas ricevitaj per memsuficanta amalgameco de korpoj kun unara predikato nomanta sumigan au obligan subgrupon, ciam lau la Hrushovskija maniero. Al uzado de ciuj kiuj la anglujon malkonprenas, tiel tradukigas la supera citajo : "Estas prava ke tiu ci kiu kun la sago interrilatigas, la sagecon rikoltas". Gustatempe, la autoro varmege dankas ciujn kiuj la korektan citajon sendis al li, speciale la unuan respondinton : David KUEKER.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Bad groups of finite Morley rank.Luis Jaime Corredor - 1989 - Journal of Symbolic Logic 54 (3):768-773.
    We prove the following theorem. Let G be a connected simple bad group (i.e. of finite Morley rank, nonsolvable and with all the Borel subgroups nilpotent) of minimal Morley rank. Then the Borel subgroups of G are conjugate to each other, and if B is a Borel subgroup of G, then $G = \bigcup_{g \in G}B^g,N_G(B) = B$ , and G has no involutions.
    Download  
     
    Export citation  
     
    Bookmark   3 citations