Switch to: Citations

Add references

You must login to add references.
  1. On countable choice and sequential spaces.Gonçalo Gutierres - 2008 - Mathematical Logic Quarterly 54 (2):145-152.
    Under the axiom of choice, every first countable space is a Fréchet-Urysohn space. Although, in its absence even ℝ may fail to be a sequential space.Our goal in this paper is to discuss under which set-theoretic conditions some topological classes, such as the first countable spaces, the metric spaces, or the subspaces of ℝ, are classes of Fréchet-Urysohn or sequential spaces.In this context, it is seen that there are metric spaces which are not sequential spaces. This fact raises the question (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-constructive Properties of the Real Numbers.J. E. Rubin, K. Keremedis & Paul Howard - 2001 - Mathematical Logic Quarterly 47 (3):423-431.
    We study the relationship between various properties of the real numbers and weak choice principles.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sequential topological conditions in ℝ in the absence of the axiom of choice.Gonçalo Gutierres - 2003 - Mathematical Logic Quarterly 49 (3):293-298.
    It is known that – assuming the axiom of choice – for subsets A of ℝ the following hold: (a) A is compact iff it is sequentially compact, (b) A is complete iff it is closed in ℝ, (c) ℝ is a sequential space. We will show that these assertions are not provable in the absence of the axiom of choice, and that they are equivalent to each.
    Download  
     
    Export citation  
     
    Bookmark   5 citations