Switch to: Citations

Add references

You must login to add references.
  1. Addition and multiplication of sets.Laurence Kirby - 2007 - Mathematical Logic Quarterly 53 (1):52-65.
    Ordinal addition and multiplication can be extended in a natural way to all sets. I survey the structure of the sets under these operations. In particular, the natural partial ordering associated with addition of sets is shown to be a tree. This allows us to prove that any set has a unique representation as a sum of additively irreducible sets, and that the non-empty elements of any model of set theory can be partitioned into infinitely many submodels, each isomorphic to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Finitism.W. W. Tait - 1981 - Journal of Philosophy 78 (9):524-546.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Finitary Set Theory.Laurence Kirby - 2009 - Notre Dame Journal of Formal Logic 50 (3):227-244.
    I argue for the use of the adjunction operator (adding a single new element to an existing set) as a basis for building a finitary set theory. It allows a simplified axiomatization for the first-order theory of hereditarily finite sets based on an induction schema and a rigorous characterization of the primitive recursive set functions. The latter leads to a primitive recursive presentation of arithmetical operations on finite sets.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Induction and foundation in the theory of hereditarily finite sets.Flavio Previale - 1994 - Archive for Mathematical Logic 33 (3):213-241.
    The paper contains an axiomatic treatment of the intuitionistic theory of hereditarily finite sets, based on an induction axiom-schema and a finite set of single axioms. The main feature of the principle of induction used (due to Givant and Tarski) is that it incorporates Foundation. On the analogy of what is done in Arithmetic, in the axiomatic system selected the transitive closure of the membership relation is taken as a primitive notion, so as to permit an immediate adaptation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A New Kind of Science.Stephen Wolfram - 2002 - Wolfram Media.
    NOW IN PAPERBACK"€"Starting from a collection of simple computer experiments"€"illustrated in the book by striking computer graphics"€"Stephen Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe.
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Inner models for set theory—Part I.J. C. Shepherdson - 1951 - Journal of Symbolic Logic 16 (3):161-190.
    One of the standard ways of proving the consistency of additional hypotheses with the basic axioms of an axiom system is by the construction of what may be described as ‘inner models.’ By starting with a domain of individuals assumed to satisfy the basic axioms an inner model is constructed whose domain of individuals is a certain subset of the original individual domain. If such an inner model can be constructed which satisfies not only the basic axioms but also the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Slim models of zermelo set theory.A. R. D. Mathias - 2001 - Journal of Symbolic Logic 66 (2):487-496.
    Working in Z + KP, we give a new proof that the class of hereditarily finite sets cannot be proved to be a set in Zermelo set theory, extend the method to establish other failures of replacement, and exhibit a formula Φ(λ, a) such that for any sequence $\langle A_{\lambda} \mid \lambda \text{a limit ordinal} \rangle$ where for each $\lambda, A_{\lambda} \subseteq ^{\lambda}2$ , there is a supertransitive inner model of Zermelo containing all ordinals in which for every λ A (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations