Switch to: Citations

Add references

You must login to add references.
  1. Quantum Reality and Measurement: A Quantum Logical Approach.Masanao Ozawa - 2011 - Foundations of Physics 41 (3):592-607.
    The recently established universal uncertainty principle revealed that two nowhere commuting observables can be measured simultaneously in some state, whereas they have no joint probability distribution in any state. Thus, one measuring apparatus can simultaneously measure two observables that have no simultaneous reality. In order to reconcile this discrepancy, an approach based on quantum logic is proposed to establish the relation between quantum reality and measurement. We provide a language speaking of values of observables independent of measurement based on quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Orthomodular-valued models for quantum set theory.Masanao Ozawa - 2017 - Review of Symbolic Logic 10 (4):782-807.
    In 1981, Takeuti introduced quantum set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed linear subspaces of a Hilbert space in a manner analogous to Boolean-valued models of set theory, and showed that appropriate counterparts of the axioms of Zermelo–Fraenkel set theory with the axiom of choice hold in the model. In this paper, we aim at unifying Takeuti’s model with Boolean-valued models by constructing models based on general complete orthomodular (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The deduction theorem for quantum logic—some negative results.Jacek Malinowski - 1990 - Journal of Symbolic Logic 55 (2):615-625.
    We prove that no logic (i.e. consequence operation) determined by any class of orthomodular lattices admits the deduction theorem (Theorem 2.7). We extend those results to some broader class of logics determined by ortholattices (Corollary 2.6).
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Quantum set theory: Transfer Principle and De Morgan's Laws.Masanao Ozawa - 2021 - Annals of Pure and Applied Logic 172 (4):102938.
    In quantum logic, introduced by Birkhoff and von Neumann, De Morgan's Laws play an important role in the projection-valued truth value assignment of observational propositions in quantum mechanics. Takeuti's quantum set theory extends this assignment to all the set-theoretical statements on the universe of quantum sets. However, Takeuti's quantum set theory has a problem in that De Morgan's Laws do not hold between universal and existential bounded quantifiers. Here, we solve this problem by introducing a new truth value assignment for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Implicational quantum logic.Kenji Tokuo - 2022 - Axiomathes 32 (2):473-483.
    A non-classical subsystem of orthomodular quantum logic is proposed. This system employs two basic operations: the Sasaki hook as implication and the _and-then_ operation as conjunction. These operations successfully satisfy modus ponens and the deduction theorem. In other words, they form an adjunction in terms of category theory. Two types of semantics are presented for this logic: one algebraic and one physical. The algebraic semantics deals with orthomodular lattices, as in traditional quantum logic. The physical semantics is given as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A double deduction system for quantum logic based on natural deduction.Yannis Delmas-Rigoutsos - 1997 - Journal of Philosophical Logic 26 (1):57-67.
    The author presents a deduction system for Quantum Logic. This system is a combination of a natural deduction system and rules based on the relation of compatibility. This relation is the logical correspondant of the commutativity of observables in Quantum Mechanics or perpendicularity in Hilbert spaces. Contrary to the system proposed by Gibbins and Cutland, the natural deduction part of the system is pure: no algebraic artefact is added. The rules of the system are the rules of Classical Natural Deduction (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A New Approach to Quantum Logic.J. L. Bell - 1986 - British Journal for the Philosophy of Science 37 (1):83-99.
    The idea of a 'logic of quantum mechanics' or quantum logic was originally suggested by Birkhoff and von Neumann in their pioneering paper [1936]. Since that time there has been much argument about whether, or in what sense, quantum 'logic' can be actually considered a true logic (see, e.g. Bell and Hallett [1982], Dummett [1976], Gardner [1971]) and, if so, how it is to be distinguished from classical logic. In this paper I put forward a simple and natural semantical framework (...)
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Generalized normal logic.J. Jay Zeman - 1978 - Journal of Philosophical Logic 7 (1):225 - 243.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Orthomodular Logic.Gudrun Kalmbach - 1974 - Mathematical Logic Quarterly 20 (25‐27):395-406.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Natural Deduction for Quantum Logic.K. Tokuo - 2022 - Logica Universalis 16 (3):469-497.
    This paper presents a natural deduction system for orthomodular quantum logic. The system is shown to be provably equivalent to Nishimura’s quantum sequent calculus. Through the Curry–Howard isomorphism, quantum $$\lambda $$ -calculus is also introduced for which strong normalization property is established.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sequential method in quantum logic.Hirokazu Nishimura - 1980 - Journal of Symbolic Logic 45 (2):339-352.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Transfer Principle in Quantum Set Theory.Masanao Ozawa - 2007 - Journal of Symbolic Logic 72 (2):625 - 648.
    In 1981, Takeuti introduced quantum set theory as the quantum counterpart of Boolean valued models of set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed subspaces in a Hilbert space and showed that appropriate quantum counterparts of ZFC axioms hold in the model. Here, Takeuti's formulation is extended to construct a model of set theory based on the logic represented by the lattice of projections in an arbitrary von Neumann algebra. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Implication connectives in orthomodular lattices.L. Herman, E. L. Marsden & R. Piziak - 1975 - Notre Dame Journal of Formal Logic 16 (3):305-328.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Zur Axiomatik der Quantenlogik.H. Kunsemüller - 1964 - Philosophia Naturalis 8 (4):363-376.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Orthomodular Logic.Gudrun Kalmbach - 1974 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 20 (25-27):395-406.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • An axiom system for orthomodular quantum logic.Gary M. Hardegree - 1981 - Studia Logica 40 (1):1 - 12.
    Logical matrices for orthomodular logic are introduced. The underlying algebraic structures are orthomodular lattices, where the conditional connective is the Sasaki arrow. An axiomatic calculusOMC is proposed for the orthomodular-valid formulas.OMC is based on two primitive connectives — the conditional, and the falsity constant. Of the five axiom schemata and two rules, only one pertains to the falsity constant. Soundness is routine. Completeness is demonstrated using standard algebraic techniques. The Lindenbaum-Tarski algebra ofOMC is constructed, and it is shown to be (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Semantic analysis of orthologic.R. I. Goldblatt - 1974 - Journal of Philosophical Logic 3 (1/2):19 - 35.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Material implication in orthomodular (and Boolean) lattices.Gary M. Hardegree - 1981 - Notre Dame Journal of Formal Logic 22 (2):163-182.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Quantum logic is undecidable.Tobias Fritz - 2020 - Archive for Mathematical Logic 60 (3):329-341.
    We investigate the first-order theory of closed subspaces of complex Hilbert spaces in the signature \\), where ‘\’ is the orthogonality relation. Our main result is that already its quasi-identities are undecidable: there is no algorithm to decide whether an implication between equations and orthogonality relations implies another equation. This is a corollary of a recent result of Slofstra in combinatorial group theory. It follows upon reinterpreting that result in terms of the hypergraph approach to quantum contextuality, for which it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Substructural Gentzen Calculus for Orthomodular Quantum Logic.Davide Fazio, Antonio Ledda, Francesco Paoli & Gavin St John - 2023 - Review of Symbolic Logic 16 (4):1177-1198.
    We introduce a sequent system which is Gentzen algebraisable with orthomodular lattices as equivalent algebraic semantics, and therefore can be viewed as a calculus for orthomodular quantum logic. Its sequents are pairs of non-associative structures, formed via a structural connective whose algebraic interpretation is the Sasaki product on the left-hand side and its De Morgan dual on the right-hand side. It is a substructural calculus, because some of the standard structural sequent rules are restricted—by lifting all such restrictions, one recovers (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A bridge between q-worlds.Benjamin Eva, Masanao Ozawa & Andreas Doering - 2021 - Review of Symbolic Logic 14 (2):447-486.
    Quantum set theory and topos quantum theory are two long running projects in the mathematical foundations of quantum mechanics that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory inside of nonclassical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to the physical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Bridge Between Q-Worlds.Andreas Döring, E. V. A. Benjamin & Masanao Ozawa - 2021 - Review of Symbolic Logic 14 (2):447-486.
    Quantum set theory (QST) and topos quantum theory (TQT) are two long running projects in the mathematical foundations of quantum mechanics (QM) that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory inside of nonclassical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum logic and physical modalities.M. L. Dalla Chiara - 1977 - Journal of Philosophical Logic 6 (1):391-404.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Quantum Mathematics.J. Michael Dunn - 1980 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:512 - 531.
    This paper explores the development of mathematics on a quantum logical base when mathematical postulates are taken as necessary truths. First it is shown that first-order Peano arithmetic formulated with quantum logic has the same theorems as classical first-order Peano arithmetic. Distribution for first-order arithmetical formulas is a theorem not of quantum logic but rather of arithmetic. Second, it is shown that distribution fails for second-order Peano arithmetic without extensionality. Third, it is shown that distribution holds for second-order Peano arithmetic (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations