Switch to: Citations

Add references

You must login to add references.
  1. Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • Ultrafilters in reverse mathematics.Henry Towsner - 2014 - Journal of Mathematical Logic 14 (1):1450001.
    We extend theories of reverse mathematics by a non-principal ultrafilter, and show that these are conservative extensions of the usual theories ACA0, ATR0, and [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Open questions in reverse mathematics.Antonio Montalbán - 2011 - Bulletin of Symbolic Logic 17 (3):431-454.
    We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Non-principal ultrafilters, program extraction and higher-order reverse mathematics.Alexander P. Kreuzer - 2012 - Journal of Mathematical Logic 12 (1):1250002-.
    We investigate the strength of the existence of a non-principal ultrafilter over fragments of higher-order arithmetic. Let [Formula: see text] be the statement that a non-principal ultrafilter on ℕ exists and let [Formula: see text] be the higher-order extension of ACA0. We show that [Formula: see text] is [Formula: see text]-conservative over [Formula: see text] and thus that [Formula: see text] is conservative over PA. Moreover, we provide a program extraction method and show that from a proof of a strictly (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations