Switch to: Citations

Add references

You must login to add references.
  1. Second-order logic and foundations of mathematics.Jouko Väänänen - 2001 - Bulletin of Symbolic Logic 7 (4):504-520.
    We discuss the differences between first-order set theory and second-order logic as a foundation for mathematics. We analyse these languages in terms of two levels of formalization. The analysis shows that if second-order logic is understood in its full semantics capable of characterizing categorically central mathematical concepts, it relies entirely on informal reasoning. On the other hand, if it is given a weak semantics, it loses its power in expressing concepts categorically. First-order set theory and second-order logic are not radically (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Background Independence in Quantum Gravity and Forcing Constructions.Jerzy Król - 2004 - Foundations of Physics 34 (3):361-403.
    A general duality connecting the level of a formal theory and of a metatheory is proposed. Because of the role of natural numbers in a metatheory the existence of a dual theory is conjectured, in which the natural numbers become formal in the theory but in formalizing non-formal natural numbers taken from the dual metatheory these numbers become nonstandard. For any formal theory there may be in principle a dual theory. The dual shape of the lattice of projections over separable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations