Switch to: Citations

Add references

You must login to add references.
  1. Maximally embeddable components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.
    We investigate the partial orderings of the form 〈P(X),⊂〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \mathbb{P}(\mathbb{X}), \subset \rangle}$$\end{document}, where X=〈X,ρ〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X} =\langle X, \rho \rangle }$$\end{document} is a countable binary relational structure and P(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P} (\mathbb{X})}$$\end{document} the set of the domains of its isomorphic substructures and show that if the components of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From a1 to d5: Towards a forcing-related classification of relational structures.Miloš S. Kurilić - 2014 - Journal of Symbolic Logic 79 (1):279-295.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Forcing by non-scattered sets.Miloš S. Kurilić & Stevo Todorčević - 2012 - Annals of Pure and Applied Logic 163 (9):1299-1308.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Posets of copies of countable scattered linear orders.Miloš S. Kurilić - 2014 - Annals of Pure and Applied Logic 165 (3):895-912.
    We show that the separative quotient of the poset 〈P,⊂〉 of isomorphic suborders of a countable scattered linear order L is σ-closed and atomless. So, under the CH, all these posets are forcing-equivalent /Fin)+).
    Download  
     
    Export citation  
     
    Bookmark   5 citations