Switch to: Citations

Add references

You must login to add references.
  1. A uniform method for proving lower bounds on the computational complexity of logical theories.Kevin J. Compton & C. Ward Henson - 1990 - Annals of Pure and Applied Logic 48 (1):1.
    A new method for obtaining lower bounds on the computational complexity of logical theories is presented. It extends widely used techniques for proving the undecidability of theories by interpreting models of a theory already known to be undecidable. New inseparability results related to the well known inseparability result of Trakhtenbrot and Vaught are the foundation of the method. Their use yields hereditary lower bounds . By means of interpretations lower bounds can be transferred from one theory to another. Complicated machine (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Automata presenting structures: A survey of the finite string case.Sasha Rubin - 2008 - Bulletin of Symbolic Logic 14 (2):169-209.
    A structure has a (finite-string) automatic presentation if the elements of its domain can be named by finite strings in such a way that the coded domain and the coded atomic operations are recognised by synchronous multitape automata. Consequently, every structure with an automatic presentation has a decidable first-order theory. The problems surveyed here include the classification of classes of structures with automatic presentations, the complexity of the isomorphism problem, and the relationship between definability and recognisability.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • First-order and counting theories of ω-automatic structures.Dietrich Kuske & Markus Lohrey - 2008 - Journal of Symbolic Logic 73 (1):129-150.
    The logic L (Qu) extends first-order logic by a generalized form of counting quantifiers ("the number of elements satisfying... belongs to the set C"). This logic is investigated for structures with an injectively ω-automatic presentation. If first-order logic is extended by an infinity-quantifier, the resulting theory of any such structure is known to be decidable [6]. It is shown that, as in the case of automatic structures [21], also modulo-counting quantifiers as well as infinite cardinality quantifiers ("there are χ many (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations