Switch to: Citations

Add references

You must login to add references.
  1. The nature of number.Peter Forrest & D. M. Armstrong - 1987 - Philosophical Papers 16 (3):165-186.
    The article develops and extends the theory of Glenn Kessler (Frege, Mill and the foundations of arithmetic, Journal of Philosophy 77, 1980) that a (cardinal) number is a relation between a heap and a unit-making property that structures the heap. For example, the relation between some swan body mass and "being a swan on the lake" could be 4.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Platonism and Anti-Platonism in Mathematics. [REVIEW]Matthew McGrath - 2001 - Philosophy and Phenomenological Research 63 (1):239-242.
    Mark Balaguer has written a provocative and original book. The book is as ambitious as a work of philosophy of mathematics could be. It defends both of the dominant views concerning the ontology of mathematics, Platonism and Anti-Platonism, and then closes with an argument that there is no fact of the matter which is right.
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Platonism and Anti-Platonism in Mathematics.Mark Balaguer - 1998 - Bulletin of Symbolic Logic 8 (4):516-518.
    This book does three main things. First, it defends mathematical platonism against the main objections to that view (most notably, the epistemological objection and the multiple-reductions objection). Second, it defends anti-platonism (in particular, fictionalism) against the main objections to that view (most notably, the Quine-Putnam indispensability objection and the objection from objectivity). Third, it argues that there is no fact of the matter whether abstract mathematical objects exist and, hence, no fact of the matter whether platonism or anti-platonism is true.
    Download  
     
    Export citation  
     
    Bookmark   225 citations  
  • Are There Both Causal and Non-Causal Explanations of a Rocket’s Acceleration?Marc Lange - 2019 - Perspectives on Science 27 (1):7-25.
    . A typical textbook explanation of a rocket’s motion when its engine is fired appeals to momentum conservation: the rocket accelerates forward because its exhaust accelerates rearward and the system’s momentum must be conserved. This paper examines how this explanation works, considering three challenges it faces. First, the explanation does not proceed by describing the forces causing the rocket’s motion. Second, the rocket’s motion has a causal-mechanical explanation involving those forces. Third, if momentum conservation and the rearward motion of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations