Switch to: Citations

Add references

You must login to add references.
  1. A Flawed Argument Against Actual Infinity in Physics.Jon Perez Laraudogoitia - 2010 - Foundations of Physics 40 (12):1902-1910.
    In “Nonconservation of Energy and loss of Determinism II. Colliding with an Open Set” (2010) Atkinson and Johnson argue in favour of the idea that an actual infinity should be excluded from physics, at least in the sense that physical systems involving an actual infinity of component elements should not be admitted. In this paper I show that the argument Atkinson and Johnson use is erroneous and that an analysis of the situation considered by them is possible without requiring any (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Principia: Mathematical Principles of Natural Philosophy.Isaac Newton - 1999 - University of California Press.
    Presents Newton's unifying idea of gravitation and explains how he converted physics from a science of explanation into a general mathematical system.
    Download  
     
    Export citation  
     
    Bookmark   199 citations  
  • Causation as folk science.John D. Norton - 2007 - In Huw Price & Richard Corry (eds.), Causation, Physics and the Constitution of Reality: Russell’s Republic Revisited. New York: Oxford University Press.
    I deny that the world is fundamentally causal, deriving the skepticism on non-Humean grounds from our enduring failures to find a contingent, universal principle of causality that holds true of our science. I explain the prevalence and fertility of causal notions in science by arguing that a causal character for many sciences can be recovered, when they are restricted to appropriately hospitable domains. There they conform to a loose collection of causal notions that form a folk science of causation. This (...)
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Causation as folk science.John Norton - 2003 - Philosophers' Imprint 3:1-22.
    I deny that the world is fundamentally causal, deriving the skepticism on non-Humean grounds from our enduring failures to find a contingent, universal principle of causality that holds true of our science. I explain the prevalence and fertility of causal notions in science by arguing that a causal character for many sciences can be recovered, when they are restricted to appropriately hospitable domains. There they conform to loose and varying collections of causal notions that form folk sciences of causation. This (...)
    Download  
     
    Export citation  
     
    Bookmark   136 citations  
  • A beautiful supertask.Jon Perez Laraudogoitia - 1996 - Mind 105 (417):81-83.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Nonconservation of Energy and Loss of Determinism I. Infinitely Many Colliding Balls.David Atkinson - 2009 - Foundations of Physics 39 (8):937-957.
    An infinite number of elastically colliding balls is considered in a classical, and then in a relativistic setting. Energy and momentum are not necessarily conserved globally, even though each collision does separately conserve them. This result holds in particular when the total mass of all the balls is finite, and even when the spatial extent and temporal duration of the process are also finite. Further, the process is shown to be indeterministic: there is an arbitrary parameter in the general solution (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Losing energy in classical, relativistic and quantum mechanics.David Atkinson - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):170-180.
    A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the total mass of all the balls is finite. Classical mechanics leads to the conclusion that momentum, but not necessarily energy, must be conserved. Relativistic mechanics, on the other hand, implies that energy and momentum conservation are always violated. Quantum mechanics, however, seems to rule out the Zeno configuration as an inconsistent system.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Nonconservation of momentum in classical mechanics.Chunghyoung Lee - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):68-73.
    Pérez Laraudogoitia (1996) presented an isolated system of infinitely many particles with infinite total mass whose total classical energy and momentum are not necessarily conserved in some particular inertial frame of reference. With a more generalized model Atkinson (2007) proved that a system of infinitely many balls with finite total mass may evolve so that its total classical energy and total relativistic energy and momentum are not conserved in any inertial frame of reference, and yet concluded that its total classical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinite sequences: Finitist consequence.Martin C. Cooke - 2003 - British Journal for the Philosophy of Science 54 (4):591-599.
    A simultaneous collision that produces paradoxical indeterminism (involving N0 hypothetical particles in a classical three-dimensional Euclidean space) is described in Section 2. By showing that a similar paradox occurs with long-range forces between hypothetical particles, in Section 3, the underlying cause is seen to be that collections of such objects are assumed to have no intrinsic ordering. The resolution of allowing only finite numbers of particles is defended (as being the least ad hoc) by looking at both -sequences (in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Losing energy in classical, relativistic and quantum mechanics.David Atkinson - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):170-180.
    A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the total mass of all the balls is finite. Classical mechanics leads to the conclusion that momentum, but not necessarily energy, must be conserved. Relativistic mechanics, on the other hand, implies that energy and momentum conservation are always violated. Quantum mechanics, however, seems to rule out the Zeno configuration as an inconsistent system.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Just as Beautiful but not a Supertask.Jon P.É Laraudogoitia - 2002 - Mind 111 (442):281-288.
    In this paper I will put forward a simple case of a dynamical system which can exhibit both the indeterminism linked to escape to infinity and that linked to self-excitation. The case depends neither on the gravitational interaction between particles nor on their mutual collisions, and thus reveals the existence of a new kind of constraint that Newton's laws lay on the predictive power of classical dynamics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Nonconservation of Energy and Loss of Determinism II. Colliding with an Open Set.David Atkinson & Porter Johnson - 2010 - Foundations of Physics 40 (2):179-189.
    An actual infinity of colliding balls can be in a configuration in which the laws of mechanics lead to logical inconsistency. It is argued that one should therefore limit the domain of these laws to a finite, or only a potentially infinite number of elements. With this restriction indeterminism, energy nonconservation and creatio ex nihilo no longer occur. A numerical analysis of finite systems of colliding balls is given, and the asymptotic behaviour that corresponds to the potentially infinite system is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Nonconservation of Energy and Loss of Determinism I. Infinitely Many Colliding Balls.David Atkinson & Porter Johnson - 2009 - Foundations of Physics 39 (8):937-957.
    An infinite number of elastically colliding balls is considered in a classical, and then in a relativistic setting. Energy and momentum are not necessarily conserved globally, even though each collision does separately conserve them. This result holds in particular when the total mass of all the balls is finite, and even when the spatial extent and temporal duration of the process are also finite. Further, the process is shown to be indeterministic: there is an arbitrary parameter in the general solution (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Just as beautiful but not (necessarily) a supertask.Jon Pérez Laraudogoitia - 2002 - Mind 111 (442):281-288.
    In this paper I will put forward a simple case of a dynamical system which can exhibit both the indeterminism linked to escape to infinity and that linked to self-excitation. The case depends neither on the gravitational interaction between particles nor on their mutual collisions, and thus reveals the existence of a new kind of constraint that Newton's laws lay on the predictive power of classical dynamics.
    Download  
     
    Export citation  
     
    Bookmark   6 citations