Switch to: Citations

Add references

You must login to add references.
  1. Double sequences, almost Cauchyness and BD-N.Josef Berger, Douglas Bridges & Erik Palmgren - 2012 - Logic Journal of the IGPL 20 (1):349-354.
    It is shown that, relative to Bishop-style constructive mathematics, the boundedness principle BD-N is equivalent both to a general result about the convergence of double sequences and to a particular one about Cauchyness in a semi-metric space.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructive notions of equicontinuity.Douglas S. Bridges - 2009 - Archive for Mathematical Logic 48 (5):437-448.
    In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-N, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-N.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The anti-Specker property, a Heine–Borel property, and uniform continuity.Josef Berger & Douglas Bridges - 2008 - Archive for Mathematical Logic 46 (7-8):583-592.
    Working within Bishop’s constructive framework, we examine the connection between a weak version of the Heine–Borel property, a property antithetical to that in Specker’s theorem in recursive analysis, and the uniform continuity theorem for integer-valued functions. The paper is a contribution to the ongoing programme of constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Strong continuity implies uniform sequential continuity.Douglas Bridges, Hajime Ishihara, Peter Schuster & Luminiţa Vîţa - 2005 - Archive for Mathematical Logic 44 (7):887-895.
    Uniform sequential continuity, a property classically equivalent to sequential continuity on compact sets, is shown, constructively, to be a consequence of strong continuity on a metric space. It is then shown that in the case of a separable metric space, uniform sequential continuity implies strong continuity if and only if one adopts a certain boundedness principle that, although valid in the classical, recursive and intuitionistic setting, is independent of Heyting arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   9 citations