Switch to: Citations

Add references

You must login to add references.
  1. Boltzmann's H-theorem, its discontents, and the birth of statistical mechanics.Harvey R. Brown, Wayne Myrvold & Jos Uffink - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):174-191.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • How scientific models can explain.Alisa Bokulich - 2011 - Synthese 180 (1):33 - 45.
    Scientific models invariably involve some degree of idealization, abstraction, or nationalization of their target system. Nonetheless, I argue that there are circumstances under which such false models can offer genuine scientific explanations. After reviewing three different proposals in the literature for how models can explain, I shall introduce a more general account of what I call model explanations, which specify the conditions under which models can be counted as explanatory. I shall illustrate this new framework by applying it to the (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • Distinguishing Explanatory from Nonexplanatory Fictions.Alisa Bokulich - 2012 - Philosophy of Science 79 (5):725-737.
    There is a growing recognition that fictions have a number of legitimate functions in science, even when it comes to scientific explanation. However, the question then arises, what distinguishes an explanatory fiction from a nonexplanatory one? Here I examine two cases—one in which there is a consensus in the scientific community that the fiction is explanatory and another in which the fiction is not explanatory. I shall show how my account of “model explanations” is able to explain this asymmetry, and (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Defending the structural concept of representation.Andreas Bartels - 2006 - Theoria 21 (1):7-19.
    The paper defends the structural concept of representation, defined by homomorphisms, against the main objections that have been raised against it: Logical objections, the objection from misrepresentation, the objection from failing necessity, and the copy theory objection. Homomorphic representations are not necessarily ‘copies’ of their representanda, and thus can convey scientific insight.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • When scientific models represent.Daniela M. Bailer-Jones - 2003 - International Studies in the Philosophy of Science 17 (1):59 – 74.
    Scientific models represent aspects of the empirical world. I explore to what extent this representational relationship, given the specific properties of models, can be analysed in terms of propositions to which truth or falsity can be attributed. For example, models frequently entail false propositions despite the fact that they are intended to say something "truthful" about phenomena. I argue that the representational relationship is constituted by model users "agreeing" on the function of a model, on the fit with data and (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Models in Science (2nd edition).Roman Frigg & Stephan Hartmann - 2021 - The Stanford Encyclopedia of Philosophy.
    Models are of central importance in many scientific contexts. The centrality of models such as inflationary models in cosmology, general-circulation models of the global climate, the double-helix model of DNA, evolutionary models in biology, agent-based models in the social sciences, and general-equilibrium models of markets in their respective domains is a case in point (the Other Internet Resources section at the end of this entry contains links to online resources that discuss these models). Scientists spend significant amounts of time building, (...)
    Download  
     
    Export citation  
     
    Bookmark   232 citations  
  • Representation in Science.Mauricio Suárez - 2016 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. Oxford University Press USA. pp. 440-459.
    This article provides a state of the art review of the philosophical literature on scientific representation. It first argues that the topic emerges historically mainly out of what may be called the modelling tradition. It then introduces a number of helpful analytical distinctions, and goes on to divide contemporary approaches to scientific representation into two distinct kinds, substantive and deflationary. Analogies with related discussions of artistic representation in aesthetics, and of the nature of truth in metaphysics are pursued. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Scientific representation: Against similarity and isomorphism.Mauricio Suárez - 2003 - International Studies in the Philosophy of Science 17 (3):225-244.
    I argue against theories that attempt to reduce scientific representation to similarity or isomorphism. These reductive theories aim to radically naturalize the notion of representation, since they treat scientist's purposes and intentions as non-essential to representation. I distinguish between the means and the constituents of representation, and I argue that similarity and isomorphism are common but not universal means of representation. I then present four other arguments to show that similarity and isomorphism are not the constituents of scientific representation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Three Kinds of Idealization.Michael Weisberg - 2007 - Journal of Philosophy 104 (12):639-659.
    Philosophers of science increasingly recognize the importance of idealization: the intentional introduction of distortion into scientific theories. Yet this recognition has not yielded consensus about the nature of idealization. e literature of the past thirty years contains disparate characterizations and justifications, but little evidence of convergence towards a common position.
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • Structural representation and surrogative reasoning.Chris Swoyer - 1991 - Synthese 87 (3):449 - 508.
    It is argued that a number of important, and seemingly disparate, types of representation are species of a single relation, here called structural representation, that can be described in detail and studied in a way that is of considerable philosophical interest. A structural representation depends on the existence of a common structure between a representation and that which it represents, and it is important because it allows us to reason directly about the representation in order to draw conclusions about the (...)
    Download  
     
    Export citation  
     
    Bookmark   179 citations  
  • Approximation and Idealization: Why the Difference Matters.John D. Norton - 2012 - Philosophy of Science 79 (2):207-232.
    It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected, even inconsistent properties, familiar limit systems used in statistical physics can fail to provide idealizations, but are merely approximations. A dominance argument suggests that the limiting idealizations of statistical physics should be demoted to approximations.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • On the general theory of meaningful representation.Brent Mundy - 1986 - Synthese 67 (3):391 - 437.
    The numerical representations of measurement, geometry and kinematics are here subsumed under a general theory of representation. The standard theories of meaningfulness of representational propositions in these three areas are shown to be special cases of two theories of meaningfulness for arbitrary representational propositions: the theories based on unstructured and on structured representation respectively. The foundations of the standard theories of meaningfulness are critically analyzed and two basic assumptions are isolated which do not seem to have received adequate justification: the (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Galilean Idealization.Ernan McMullin - 1985 - Studies in History and Philosophy of Science Part A 16 (3):247.
    Download  
     
    Export citation  
     
    Bookmark   311 citations  
  • Computer Simulations, Idealizations and Approximations.Ronald Laymon - 1990 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990 (2):519-534.
    It’s uncontroversial that notions of idealization and approximation are central to understanding computer simulations and their rationale. So, for example, one common form of computer simulation is to abandon a realistic approach that is computationally non-tractable for a more idealized but computationally tractable approach. Many simulations of systems of interacting members can be understood this way. In such simulations, realistic descriptions of individual members are replaced with less realistic descriptions which have the virtue of making interactions computationally tractable. Such simulations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The strategy of model-based science.Peter Godfrey-Smith - 2006 - Biology and Philosophy 21 (5):725-740.
    Download  
     
    Export citation  
     
    Bookmark   275 citations  
  • How models are used to represent reality.Ronald N. Giere - 2004 - Philosophy of Science 71 (5):742-752.
    Most recent philosophical thought about the scientific representation of the world has focused on dyadic relationships between language-like entities and the world, particularly the semantic relationships of reference and truth. Drawing inspiration from diverse sources, I argue that we should focus on the pragmatic activity of representing, so that the basic representational relationship has the form: Scientists use models to represent aspects of the world for specific purposes. Leaving aside the terms "law" and "theory," I distinguish principles, specific conditions, models, (...)
    Download  
     
    Export citation  
     
    Bookmark   301 citations  
  • Cartwright on explanation and idealization.Mehmet Elgin & Elliott Sober - 2002 - Erkenntnis 57 (3):441 - 450.
    Nancy Cartwright (1983, 1999) argues that (1) the fundamental laws of physics are true when and only when appropriate ceteris paribus modifiers are attached and that (2) ceteris paribus modifiers describe conditions that are almost never satisfied. She concludes that when the fundamental laws of physics are true, they don't apply in the real world, but only in highly idealized counterfactual situations. In this paper, we argue that (1) and (2) together with an assumption about contraposition entail the opposite conclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Defending the structural concept of representation.Andreas Bartels - 2006 - Theoria 21 (55):7-19.
    The aim of this paper is to defend the structural concept of representation, as defined by homomorphisms, against its main objections, namely: logical objections, the objection from misrepresentation, theobjection from failing necessity, and the copy theory objection. The logical objections can be met by reserving the relation.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • What statistical mechanics actually does.David Wallace - unknown
    I give a brief account of the way in which thermodynamics and statistical mechanics actually work as contemporary scientific theories, and in particular of what statistical mechanics contributes to thermodynamics over and above any supposed underpinning of the latter's general principles. In doing so, I attempt to illustrate that statistical mechanics should not be thought of wholly or even primarily as itself a foundational project for thermodynamics, and that conceiving of it this way potentially distorts the foundational study of statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Representation in science.Mauricio Suárez - 2015 - The Oxford Handbook of Philosophy of Science.
    This article provides a state-of-the-art review of the philosophical literature on scientific representation. It first argues that the topic emerges historically mainly out of what may be called the modelling tradition. It then introduces a number of helpful analytical distinctions and goes on to divide contemporary approaches to scientific representation into two distinct kinds, substantive and deflationary. Analogies with related discussions of artistic representation in aesthetics and the nature of truth in metaphysics are pursued. It is finally urged that the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Compendium of the foundations of classical statistical physics.Jos Uffink - 2005 - In Jeremy Butterfield & John Earman (eds.), Handbook of the Philosophy of Physics. Elsevier.
    Roughly speaking, classical statistical physics is the branch of theoretical physics that aims to account for the thermal behaviour of macroscopic bodies in terms of a classical mechanical model of their microscopic constituents, with the help of probabilistic assumptions. In the last century and a half, a fair number of approaches have been developed to meet this aim. This study of their foundations assesses their coherence and analyzes the motivations for their basic assumptions, and the interpretations of their central concepts. (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Computer Simulations, Idealizations and Approximations.Ronald Laymon - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:519 - 534.
    It's uncontroversial that notions of idealization and approximation are central to understanding computer simulations and their rationale. What's not so clear is what exactly these notions come to. Two distinct forms of approximation will be distinguished and their features contrasted with those of idealizations. These distinctions will be refined and closely tied to computer simulations by means of Scott-Strachey denotational programming semantics. The use of this sort of semantics also provides a convenient format for argumentation in favor of several theses (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations