Switch to: Citations

Add references

You must login to add references.
  1. Axiomatizing relativistic dynamics using formal thought experiments.Attila Molnár & Gergely Székely - 2015 - Synthese 192 (7):2183-2222.
    Thought experiments are widely used in the informal explanation of Relativity Theories; however, they are not present explicitly in formalized versions of Relativity Theory. In this paper, we present an axiom system of Special Relativity which is able to grasp thought experiments formally and explicitly. Moreover, using these thought experiments, we can provide an explicit definition of relativistic mass based only on kinematical concepts and we can geometrically prove the Mass Increase Formula in a natural way, without postulates of conservation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Model Theory: An Introduction.David Marker - 2003 - Bulletin of Symbolic Logic 9 (3):408-409.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Foundations of Space-Time Theories.Michael Friedman - 1987 - Noûs 21 (4):595-601.
    Download  
     
    Export citation  
     
    Bookmark   240 citations  
  • (1 other version)Formal statement of the special principle of relativity.Marton Gomori & Laszlo E. Szabo - 2015 - Synthese 192 (7):1-24.
    While there is a longstanding discussion about the interpretation of the extended, general principle of relativity, there seems to be a consensus that the special principle of relativity is absolutely clear and unproblematic. However, a closer look at the literature on relativistic physics reveals a more confusing picture. There is a huge variety of, sometimes metaphoric, formulations of the relativity principle, and there are different, sometimes controversial, views on its actual content. The aim of this paper is to develop a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A logic road from special relativity to general relativity.Hajnal Andréka, Judit X. Madarász, István Németi & Gergely Székely - 2012 - Synthese 186 (3):633 - 649.
    We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we "derive" an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativity. This way we hope to make general relativity more accessible for the non-specialist.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The existence of superluminal particles is consistent with relativistic dynamics.Judit X. Madarász & Gergely Székely - 2014 - Journal of Applied Logic 12 (4):477-500.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Axiomatizing Relativistic Dynamics without Conservation Postulates.H. Andréka, J. X. Madarász, I. Németi & G. Székely - 2008 - Studia Logica 89 (2):163-186.
    A part of relativistic dynamics is axiomatized by simple and purely geometrical axioms formulated within first-order logic. A geometrical proof of the formula connecting relativistic and rest masses of bodies is presented, leading up to a geometric explanation of Einstein's famous E = mc² . The connection of our geometrical axioms and the usual axioms on the conservation of mass, momentum and four-momentum is also investigated.
    Download  
     
    Export citation  
     
    Bookmark   9 citations