Switch to: Citations

Add references

You must login to add references.
  1. The theory of {vec Z}C(2)^2-lattices is decidable.Stefano Baratella & Carlo Toffalori - 1998 - Archive for Mathematical Logic 37 (2):91-104.
    For arbitrary finite group $G$ and countable Dedekind domain $R$ such that the residue field $R/P$ is finite for every maximal $R$ -ideal $P$ , we show that the localizations at every maximal ideal of two $RG$ -lattices are isomorphic if and only if the two lattices satisfy the same first order sentences. Then we investigate generalizations of the above results to arbitrary $R$ -torsion-free $RG$ -modules and we apply the previous results to show the decidability of the theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Model theory of modules.Martin Ziegler - 1984 - Annals of Pure and Applied Logic 26 (2):149-213.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • (1 other version)The decision problem for {vec Z}C(p^3)-lattices with p prime.Carlo Toffalori - 1998 - Archive for Mathematical Logic 37 (2):127-142.
    We show undecidability for lattices over a group ring ${\vec Z} \, G$ where $G$ has a cyclic subgroup of order $p^3$ for some odd prime $p$ . Then we discuss the decision problem for ${\vec Z} \, G$ -lattices where $G$ is a cyclic group of order 8, and we point out that a positive answer implies – in some sense – the solution of the “wild $\Leftrightarrow$ undecidable” conjecture.
    Download  
     
    Export citation  
     
    Bookmark   5 citations