Switch to: Citations

Add references

You must login to add references.
  1. Functional analysis.Robert E. Cummins - 1975 - Journal of Philosophy 72 (November):741-64.
    Download  
     
    Export citation  
     
    Bookmark   859 citations  
  • In defense of proper functions.Ruth Millikan - 1989 - Philosophy of Science 56 (June):288-302.
    I defend the historical definition of "function" originally given in my Language, Thought and Other Biological Categories (1984a). The definition was not offered in the spirit of conceptual analysis but is more akin to a theoretical definition of "function". A major theme is that nonhistorical analyses of "function" fail to deal adequately with items that are not capable of performing their functions.
    Download  
     
    Export citation  
     
    Bookmark   516 citations  
  • Pathways to biomedical discovery.Paul Thagard - 2003 - Philosophy of Science 70 (2):235-254.
    A biochemical pathway is a sequence of chemical reactions in a biological organism. Such pathways specify mechanisms that explain how cells carry out their major functions by means of molecules and reactions that produce regular changes. Many diseases can be explained by defects in pathways, and new treatments often involve finding drugs that correct those defects. This paper presents explanation schemas and treatment strategies that characterize how thinking about pathways contributes to biomedical discovery. It discusses the significance of pathways for (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Functions as Selected Effects: The Conceptual Analyst’s Defense.Karen Neander - 1991 - Philosophy of Science 58 (2):168-184.
    In this paper I defend an etiological theory of biological functions (according to which the proper function of a trait is the effect for which it was selected by natural selection) against three objections which have been influential. I argue, contrary to Millikan, that it is wrong to base our defense of the theory on a rejection of conceptual analysis, for conceptual analysis does have an important role in philosophy of science. I also argue that biology requires a normative notion (...)
    Download  
     
    Export citation  
     
    Bookmark   419 citations  
  • Role functions, mechanisms, and hierarchy.Carl F. Craver - 2001 - Philosophy of Science 68 (1):53-74.
    Many areas of science develop by discovering mechanisms and role functions. Cummins' (1975) analysis of role functions-according to which an item's role function is a capacity of that item that appears in an analytic explanation of the capacity of some containing system-captures one important sense of "function" in the biological sciences and elsewhere. Here I synthesize Cummins' account with recent work on mechanisms and causal/mechanical explanation. The synthesis produces an analysis of specifically mechanistic role functions, one that uses the characteristic (...)
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • (1 other version)Interlevel experiments and multilevel mechanisms in the neuroscience of memory.Carl F. Craver - 2002 - Philosophy of Science Supplemental Volume 69 (3):S83-S97.
    The dominant neuroscientific theory of spatial memory is, like many theories in neuroscience, a multilevel description of a mechanism. The theory links the activities of molecules, cells, brain regions, and whole organisms into an integrated sketch of an explanation for the ability of organisms to navigate novel environments. Here I develop a taxonomy of interlevel experimental strategies for integrating the levels in such multilevel mechanisms. These experimental strategies include activation strategies, interference strategies, and additive strategies. These strategies are mutually reinforcing, (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • (1 other version)Interlevel Experiments and Multilevel Mechanisms in the Neuroscience of Memory.Carl F. Craver - 2002 - Philosophy of Science 69 (S3):S83-S97.
    The dominant neuroscientific theory of spatial memory is, like many theories in neuroscience, a multilevel description of a mechanism. The theory links the activities of molecules, cells, brain regions, and whole organisms into an integrated sketch of an explanation for the ability of organisms to navigate novel environments. Here I develop a taxonomy of interlevel experimental strategies for integrating the levels in such multilevel mechanisms. These experimental strategies include activation strategies, interference strategies, and additive strategies. These strategies are mutually reinforcing, (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1336 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   555 citations  
  • Modeling mechanisms.Stuart Glennan - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):443-464.
    Philosophers of science increasingly believe that much of science is concerned with understanding the mechanisms responsible for the production of natural phenomena. An adequate understanding of scientific research requires an account of how scientists develop and test models of mechanisms. This paper offers a general account of the nature of mechanical models, discussing the representational relationship that holds between mechanisms and their models as well as the techniques that can be used to test and refine such models. The analysis is (...)
    Download  
     
    Export citation  
     
    Bookmark   135 citations  
  • Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.William Bechtel & Robert C. Richardson - 2010 - Princeton.
    An analysis of two heuristic strategies for the development of mechanistic models, illustrated with historical examples from the life sciences. In Discovering Complexity, William Bechtel and Robert Richardson examine two heuristics that guided the development of mechanistic models in the life sciences: decomposition and localization. Drawing on historical cases from disciplines including cell biology, cognitive neuroscience, and genetics, they identify a number of "choice points" that life scientists confront in developing mechanistic explanations and show how different choices result in divergent (...)
    Download  
     
    Export citation  
     
    Bookmark   519 citations  
  • Heuristics, Descriptions, and the Scope of Mechanistic Explanation.Carlos Zednik - 2015 - In Pierre-Alain Braillard & Christophe Malaterre (eds.), Explanation in Biology. An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Dordrecht: Springer. pp. 295-318.
    The philosophical conception of mechanistic explanation is grounded on a limited number of canonical examples. These examples provide an overly narrow view of contemporary scientific practice, because they do not reflect the extent to which the heuristic strategies and descriptive practices that contribute to mechanistic explanation have evolved beyond the well-known methods of decomposition, localization, and pictorial representation. Recent examples from evolutionary robotics and network approaches to biology and neuroscience demonstrate the increasingly important role played by computer simulations and mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Optimality explanations: a plea for an alternative approach.Collin Rice - 2012 - Biology and Philosophy 27 (5):685-703.
    Recently philosophers of science have begun to pay more attention to the use of highly idealized mathematical models in scientific theorizing. An important example of this kind of highly idealized modeling is the widespread use of optimality models within evolutionary biology. One way to understand the explanations provided by these models is as a censored causal explanation: an explanation that omits certain causal factors in order to focus on a modular subset of the causal processes that led to the explanandum. (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Function and organization: comparing the mechanisms of protein synthesis and natural selection.Phyllis McKay Illari & Jon Williamson - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (3):279-291.
    In this paper, we compare the mechanisms of protein synthesis and natural selection. We identify three core elements of mechanistic explanation: functional individuation, hierarchical nestedness or decomposition, and organization. These are now well understood elements of mechanistic explanation in fields such as protein synthesis, and widely accepted in the mechanisms literature. But Skipper and Millstein have argued that natural selection is neither decomposable nor organized. This would mean that much of the current mechanisms literature does not apply to the mechanism (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Four notions of biological function.Arno G. Wouters - 2002 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 34 (4):633-668.
    I argue that there are at least four different ways in which the term ‘function’ is used in connection with the study of living organisms, namely: function as activity, function as biological role, function as biological advantage, and function as selected effect. Notion refers to what an item does by itself; refers to the contribution of an item or activity to a complex activity or capacity of an organism; refers to the value for the organism of an item having a (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Optimality modeling and explanatory generality.Angela Potochnik - 2007 - Philosophy of Science 74 (5):680-691.
    The optimality approach to modeling natural selection has been criticized by many biologists and philosophers of biology. For instance, Lewontin (1979) argues that the optimality approach is a shortcut that will be replaced by models incorporating genetic information, if and when such models become available. In contrast, I think that optimality models have a permanent role in evolutionary study. I base my argument for this claim on what I think it takes to best explain an event. In certain contexts, optimality (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Systems biology and the mechanistic framework.Pierre-Alain Braillard - 2010 - History and Philosophy of the Life Sciences 32 (1).
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Revisiting generality in biology: systems biology and the quest for design principles.Sara Green - 2015 - Biology and Philosophy 30 (5):629-652.
    Due to the variation, contingency and complexity of living systems, biology is often taken to be a science without fundamental theories, laws or general principles. I revisit this question in light of the quest for design principles in systems biology and show that different views can be reconciled if we distinguish between different types of generality. The philosophical literature has primarily focused on generality of specific models or explanations, or on the heuristic role of abstraction. This paper takes a different (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Generalization and discovery by assuming conserved mechanisms: Cross‐species research on circadian oscillators.William Bechtel - 2009 - Philosophy of Science 76 (5):762-773.
    In many domains of biology, explanation takes the form of characterizing the mechanism responsible for a particular phenomenon in a specific biological system. How are such explanations generalized? One important strategy assumes conservation of mechanisms through evolutionary descent. But conservation is seldom complete. In the case discussed, the central mechanism for circadian rhythms in animals was first identified in Drosophila and then extended to mammals. Scientists' working assumption that the clock mechanisms would be conserved both yielded important generalizations and served (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Four notions of biological function.Arno G. Wouters - 2003 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 34 (4):633-668.
    I argue that there are at least four different ways in which the term ‘function’ is used in connection with the study of living organisms, namely: function as activity, function as biological role, function as biological advantage, and function as selected effect. Notion refers to what an item does by itself; refers to the contribution of an item or activity to a complex activity or capacity of an organism; refers to the value for the organism of an item having a (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Design explanation: determining the constraints on what can be alive.Arno G. Wouters - 2007 - Erkenntnis 67 (1):65-80.
    This paper is concerned with reasonings that purport to explain why certain organisms have certain traits by showing that their actual design is better than contrasting designs. Biologists call such reasonings 'functional explanations'. To avoid confusion with other uses of that phrase, I call them 'design explanations'. This paper discusses the structure of design explanations and how they contribute to scientific understanding. Design explanations are contrastive and often compare real organisms to hypothetical organisms that cannot possibly exist. They are not (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Strategies for Discovering Mechanisms: Schema Instantiation, Modular Subassembly, Forward/Backward Chaining.Lindley Darden - 2002 - Philosophy of Science 69 (S3):S354-S365.
    Discovery proceeds in stages of construction, evaluation, and revision. Each of these stages is constrained by what is known or conjectured about what is being discovered. A new characterization of mechanism aids in specifying what is to be discovered when a mechanism is sought. Guidance in discovering mechanisms may be provided by the reasoning strategies of schema instantiation, modular subassembly, and forward/backward chaining. Examples are found in mechanisms in molecular biology, biochemistry, immunology, and evolutionary biology.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Strategies for discovering mechanisms: Schema instantiation, modular subassembly, forward/backward chaining.Lindley Darden - 2002 - Proceedings of the Philosophy of Science Association 2002 (3):S354-S365.
    Discovery proceeds in stages of construction, evaluation, and revision. Each of these stages is constrained by what is known or conjectured about what is being discovered. A new characterization of mechanism aids in specifying what is to be discovered when a mechanism is sought. Guidance in discovering mechanisms may be provided by the reasoning strategies of schema instantiation, modular subassembly, and forward/backward chaining. Examples are found in mechanisms in molecular biology, biochemistry, immunology, and evolutionary biology.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Abstraction and the Organization of Mechanisms.Arnon Levy & William Bechtel - 2013 - Philosophy of Science 80 (2):241-261.
    Proponents of mechanistic explanation all acknowledge the importance of organization. But they have also tended to emphasize specificity with respect to parts and operations in mechanisms. We argue that in understanding one important mode of organization—patterns of causal connectivity—a successful explanatory strategy abstracts from the specifics of the mechanism and invokes tools such as those of graph theory to explain how mechanisms with a particular mode of connectivity will behave. We discuss the connection between organization, abstraction, and mechanistic explanation and (...)
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • Design sans adaptation.Sara Green, Arnon Levy & William Bechtel - 2015 - European Journal for Philosophy of Science 5 (1):15-29.
    Design thinking in general, and optimality modeling in particular, have traditionally been associated with adaptationism—a research agenda that gives pride of place to natural selection in shaping biological characters. Our goal is to evaluate the role of design thinking in non-evolutionary analyses. Specifically, we focus on research into abstract design principles that underpin the functional organization of extant organisms. Drawing on case studies from engineering-inspired approaches in biology we show how optimality analysis, and other design-related methods, play a specific methodological (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Strategies in the interfield discovery of the mechanism of protein synthesis.Lindley Darden & Carl Craver - 2002 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 33 (1):1-28.
    In the 1950s and 1960s, an interfield interaction between molecular biologists and biochemists integrated important discoveries about the mechanism of protein synthesis. This extended discovery episode reveals two general reasoning strategies for eliminating gaps in descriptions of the productive continuity of mechanisms: schema instantiation and forward chaining/backtracking. Schema instantiation involves filling roles in an overall framework for the mechanism. Forward chaining and backtracking eliminate gaps using knowledge about types of entities and their activities. Attention to mechanisms highlights salient features of (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • In search of mechanisms: discoveries across the life sciences.Carl F. Craver - 2013 - London: University of Chicago Press. Edited by Lindley Darden.
    With In Search of Mechanisms, Carl F. Craver and Lindley Darden offer both a descriptive and an instructional account of how biologists discover mechanisms. Drawing on examples from across the life sciences and through the centuries, Craver and Darden compile an impressive toolbox of strategies that biologists have used and will use again to reveal the mechanisms that produce, underlie, or maintain the phenomena characteristic of living things. They discuss the questions that figure in the search for mechanisms, characterizing the (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Can mechanistic explanation be reconciled with scale-free constitution and dynamics?William Bechtel - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 53:84-93.
    Download  
     
    Export citation  
     
    Bookmark   33 citations