Switch to: Citations

Add references

You must login to add references.
  1. Logic of proofs.Sergei Artëmov - 1994 - Annals of Pure and Applied Logic 67 (1-3):29-59.
    In this paper individual proofs are integrated into provability logic. Systems of axioms for a logic with operators “A is provable” and “p is a proof of A” are introduced, provided with Kripke semantics and decision procedure. Completeness theorems with respect to the arithmetical interpretation are proved.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Explicit provability and constructive semantics.Sergei N. Artemov - 2001 - Bulletin of Symbolic Logic 7 (1):1-36.
    In 1933 Godel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Godel's provability calculus is nothing but the forgetful projection of LP. This also achieves Godel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which (...)
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • The logic of justification.Sergei Artemov - 2008 - Review of Symbolic Logic 1 (4):477-513.
    We describe a general logical framework, Justification Logic, for reasoning about epistemic justification. Justification Logic is based on classical propositional logic augmented by justification assertions t: F that read t is a justification for F. Justification Logic absorbs basic principles originating from both mainstream epistemology and the mathematical theory of proofs. It contributes to the studies of the well-known Justified True Belief vs. Knowledge problem. We state a general Correspondence Theorem showing that behind each epistemic modal logic, there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • The logic of proofs, semantically.Melvin Fitting - 2005 - Annals of Pure and Applied Logic 132 (1):1-25.
    A new semantics is presented for the logic of proofs (LP), [1, 2], based on the intuition that it is a logic of explicit knowledge. This semantics is used to give new proofs of several basic results concerning LP. In particular, the realization of S4 into LP is established in a way that carefully examines and explicates the role of the + operator. Finally connections are made with the conventional approach, via soundness and completeness results.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Explicit logics of knowledge and conservativity.Melvin Fitting - unknown
    Several justification logics have evolved, starting with the logicLP, (Artemov 2001). These can be thought of as explicit versions of modal logics, or logics of knowledge or belief, in which the unanalyzed necessity (knowledge, belief) operator has been replaced with a family of explicit justification terms. Modal logics come in various strengths. For their corresponding justification logics, differing strength is reflected in different vocabularies. What we show here is that for justification logics corresponding to modal logics extending T, various familiar (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations